

QMENU

How to Program and Use

The Menu Extension

Revision 8

Copyright 1989-2009

Jochen Merz Software

Kaiser-Wilhelm-Str. 302
47169 Duisburg

Germany

Web: SMSQ.J-M-S.COM

- 3 -

The Menu Extension

This software package offers the user a truly simple to use interface, which,
instead of continually confronting one with overlays and menus, offers easy
to use, practical menus. Not only the machine-code programmer but also the
Super BASIC user is now able to take comfortable advantage of simple
menus. Whether it's for a short program for your own use or for a
commercially viable project - this is the one for you.

The original version, written over five years ago, has been re-written and
improved several times to give the latest version available today. At this
point I would like to thank Tony Tebby for his valuable support and many
helpful ideas. The Menu Extension is actually still not the final product. The
SuperBASIC interface, for example, does not allow multiple return
parameters. Other features will be implemented as soon as time allows. As
you can see, the Menu Extension is growing all the time! New menus are
being added, others are improved.

But let's get down to the nitty-gritty of its capabilities, so that it can be used
by other programmers. It’s important for me that the Menu Extension gets
used, gets talked about - gets bought! That’s the reason for the low price of
this program package. But because every new and important change of the
program requires new documentation, there will be a small update charge.
As far as commercial applications go, of course all copyrights of the program
and the documentation remain with Jochen Merz. A passing on or copying of
the program without the written permission of Jochen Merz is forbidden. For
commercial purposes, i.e. using the Menu Extension as part of marketed
software packages, a copying of the program is only permitted on payment
of a licensing fee of 1.50 EUR net per copy. The software does not have to
be linked to compiled software, it can be delivered as a separate file on the
storage medium. No other file on the storage medium delivered with this
software may be copied. That part of the documentation pertaining to the
user side of the Menu may also be given to the customer. This does not
include the programming guide for machine code or SuperBASIC, nor the
menus which are not used! The basic condition for all this is the written
permission of Jochen Merz Software. Please ask for further information.

If you just take the FILE-SELECT function as an example, you'll soon see
what a powerful support system Menu Extension can be. FILE-SELECT is
one of the most complex menu of the Extension, not only because loading
files is a part of almost every computer activity. And above all today, when
hard disks, sub-directories etc. running under QDOS, are (thank heavens!)
pretty much an everyday thing, we need a capable file selecting system
more than ever. Look at one of the examples. You'll see that there's simply
no better way.

- 4 -

Machine Code Interface

A menu is called by using the Menus-Thing. This Thing is an extension
Thing, i.e. it contains a linked list of various routines which offer a variety of
pre-defined but flexible menus.

The use of a menu normally follows five steps:
- Prepare call-up parameter
- Use Menus-Thing
- Call the menu subroutines
- Release Menu-Thing
- Process the return parameter

At present, there are following menus, each identified by a four capital letter
abbreviation ID.

FSEL File Select

DSEL Directory Select

XSEL Extension Select

ITSL Item Select

RPER Report Error

FERR File Error

RSTR Read String

LIST List Selection (very general)

VIEW View File

BUTN Button

DORP Do and Report

CHSL Character Select

INFO Read default settings

SET Set the default settings

XBTN Extended feature Button

SYSS Select from system lists

- 5 -

The calls are carried out with the same format. The ID abbreviation is loaded
into D2. A1 is a pointer to the parameter table. It comprises of a number of
long words, with contain the parameter or the pointer to the parameter.
Behind every parameter is the meaning, followed by the type in the next line.
Parameters may be of several types, which are defined as follows:

thp.char equ $0004 character

thp.ubyt equ $0008 unsigned byte

thp.sbyt equ $000a signed byte

thp.uwrd equ $0010 unsigned word

thp.swrd equ $0012 signed word

thp.ulng equ $0020 unsigned long

thp.slng equ $0022 signed long

thp.fp8 equ $0042 eight byte floating point

thp.str equ $0100 string (pointer)

thp.sstr equ $0200 sub-string (pointer)

thp.nnul equ $0800 negative null (-1) (no thp.ptr)

thp.arr equ $0800 array (thp.ptr)

thp.opt equ $1000 optional

thp.upd equ $e100 updated parameter

thp.call equ $c000 call parameter

thp.ret equ $a000 return parameter

thp.ptr equ $8000 call or return parameter

Every parameter uses one or two longwords in the parameter table. For
simple values, it is just the value, right justified in the longword. For pointer
types, the most significant word of the first longword contains the type, the
less significant word contains additional information. The second longword is
the pointer to the value, which have to be left justified starting from the
supplied address.
The additional information is the maximum string length for return strings, or,
in case of an array, the array type.

Arrays are defined as follows: the pointer points to an array descriptor block
of the following form:
 long pointer to array contents
 if array-type is 0, pointer is absolute, if 1, long relative
 word number of dimensions
for every dimension
 word number of elements
 word element-multiplier

 The array contents is a regular table of elements.

- 6 -

The enclosed library contains two sub-routines for using and freeing the
Menu Extension. Look for user examples in the Assembler Sources of the
example programs. The entry jumps for both routines are defined as follows:

 Use Menu Extension. UT_USMEN

 Entry Exit

 D2.l Extension ID

 D3.l Version

 A1 Address of Thing

 Error returns:

 ERR.NI THING not implemented

 ERR.NF Menus not found

 any returns from Menu

 Free Menu Extension. UT_FRMEN

 Error codes are preserved

 Standard Menu Action Routine

 Entry Exit

 D0 0, +1 or error

 A1 ptr to parameter list preserved

 All registers except D0 preserved

All menus apart from BUTN require a primary window with outline. Because
the programs which call a menu already have a main window managed by
Window Manager, this should pose no problem.

The programmer may pass -1 as x- and y-position to every menu, which
then positions the window at the current pointer position.

For compatibility reasons, the programmer should pass a value of -1 (or 0 to
3) for the colourways. The colourways are not required for SMSQ/E, as the
Menu Extension uses the Colour Schemes of SMSQ/E’s HiColour drivers.
The parameter fields only exist for downward compatibility and are ignored –
except for new timeout functionality in some menus and may be used in
future versions of the Menu Extension for additional features.

- 7 -

FILE-SELECT (FSEL)

The FILE SELECT function can be given a Menu name (title), a default file
name, the name of a directory key (0=no directory, -1=DATA default, -
2=PROG default), the endings of file names, size, position and menu
attributes. The routine works on a copy of the default file name. When a file
name is selected, D0 is returned with 0 and the file name is copied into the
filename return buffer. If the user presses ESC, D0 is set to +1. If D0 is not
0, then the filename return buffer is not changed. The filename return buffer
should be at least 38 bytes long.
If the default filename is an '_', all items except the directory select item are
set to unavailable. This allows the programme to make sure that only
existing files are selected, or even only existing files with a given extension.
If the default filename is just a single space “ “, then the current hotkey
stuffer buffer content is used instead.
The extension may be set unavailable by adding an '_' to the default ending.
All items except directory can be disabled by passing a suggestion of '_'.
If the update bit in the directory or extension parameter is set, then, if the
user changes the extension or the directory, the string is updated (if it is not
a key).
If the DEV device is installed, 'DEV' is not displayed in the drivers list. If
names or directories starting with DEV are passed, they are substituted with
the device defined to the given DEV.
The minimum window size of the outlined primary window has to be 444x98
pixels.

The format of the parameter list:

fs_mennm equ $04 pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
fs_defnm equ $0c pointer to default name (or 0)
 thp.call+thp.opt+thp.str
fs_dirtp equ $10 directory type (if long must be 0, -1 or -2)
 thp.upd+thp.opt+thp.str+thp.slng
fs_dirnm equ $14 pointer to directory name or key, the pointer
 itself could be 0, -1 or -2
fs_extnm equ $1c pointer to extension name (or 0)
 thp.upd+thp.opt+thp.str
fs_size equ $20 lower byte: number of lines (or 0)
 thp.opt+thp.uwrd
fs_xpos equ $24 x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
fs_ypos equ $28 y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
fs_mainc equ $2c main colourway (-1), ignored
 thp.opt+thp.ulng
fs_filec equ $30 file colourway (-1), ignored
 thp.opt+thp.nnul+thp.ulng
fs_fname equ $38 pointer to filename return
 thp.ret+thp.str

- 8 -

DIRECTORY SELECT (DSEL)

The Directory Select function can be given a menu name, size, position and
menu attributes. If a directory name is selected, D0 is passed back with 0
and the name is returned to the directory name buffer. If the user presses
ESC, a+1 is returned to D0. If D0 is not 0, the return directory name buffer is
not changed. The return buffer should be at least 38 bytes long. The address
to which the return filename pointer points is checked for a valid directory
name. If the test passed OK, it is used as a suggestion, otherwise the DATA
default is used.

The format of the parameter list:

ds_mennm equ $04 pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
ds_lines equ $08 number of lines (or 0)
 thp.opt+thp.uwrd
ds_xpos equ $0c x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
ds_ypos equ $10 y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
ds_mainc equ $14 main colourway (-1), ignored
 thp.opt+thp.ulng
ds_ddirc equ $18 default directories colourway (-1), ignored
 thp.opt+thp.nnul+thp.ulng
ds_fname equ $20 pointer to filename return
 thp.ret+thp.str

EXTENSION SELECT (XSEL)

The Extension Select function can be given a position and menu attributes. If
an extension is selected, D0 is returned with 0 and the extension name is
copied into the return buffer. If the user presses ESC, D0 is given the value
+1. The return buffer should be at least 6 bytes long.

The format of the parameter list:

xs_xpos equ $00 x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
xs_ypos equ $04 y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
xs_mainc equ $08 main colourway (-1), ignored
 thp.opt+thp.ulng
xs_fname equ $10 pointer to filename return
 thp.ret+thp.str

- 9 -

ITEM SELECT (ITSL)

The Item Select function can be given a menu name, a request, up to three
menu options, position and menu attributes. The request can be longer than
one line. The text may contain CHR$(10) (linefeeds) or a backslash (will be
replaced by CHR$(10)). Please make sure that ROM code contains only
CHR$(10) and no backslashes! The first menu option appears approximately
in the centre of a window, a further, second option to its right and any third
menu option to the left. The pointer is always above the first menu option.
The first letter of every menu option is also used for the keyboard selector. If
a menu option comprises of a string containing only CHR$(27) (Escape), this
string will be replaced by "ESC". The keyboard selection is also done with
the ESC key.
A timeout can be provided in the MSW of is_mainc. The window will then
disappear after timeout, even if the user has not selected anything.
The function returns one of five possible values.

 0 DO or ESC in window, but no option has been selected
 1 Middle option selected
 2 Right hand option selected
 3 Left hand option selected
 -3 Timeout – nothing selected

If the user presses ESC when no ESC option exists, D0 is returned with +1.
The pointer may point to a longword instead of a string which should contain
a standard error code, which is then expanded into text and displayed.

The format of the parameter list:

is_mennm equ $04 pointer to menu name (or 0)
 thp.call+thp.opt+thp.str+thp.slng
is_prmpt equ $0c pointer to prompt (or 0)
 thp.call+thp.opt+thp.str+thp.slng
is_item1 equ $14 pointer to text of item 1
 thp.call+thp.str
is_item2 equ $1c pointer to text of item 2 (or 0)
 thp.call+thp.opt+thp.str
is_item3 equ $24 pointer to text of item 3 (or 0)
 thp.call+thp.opt+thp.str
is_xpos equ $28 x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
is_ypos equ $2c y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
is_mainc equ $30 optional timeout in upper word, else -1
 thp.opt+thp.ulng
is_itnum equ $38 item number return
 thp.ret+thp.ulng

- 10 -

REPORT ERROR (RPER)

The Report Error procedure can be given an error code, position and menu
attributes. If the user presses ESC, D0 is returned with +1.
The error code may be zero, in which case the message 'no error' appears.
The special errors (e.g. pointer to string with bit 31 set) are also reported.
For long error messages, the window is dynamically widened.
A timeout can be provided in the MSW of er_mainc. The window will then
disappear after timeout, even if the user has not acknowledged it by clicking.

The format of the parameter list:

er_error equ $00 error code
 thp.ulng
er_xpos equ $04 x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
er_ypos equ $08 y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
er_mainc equ $0c optional timeout in upper word, else -1
 thp.opt+thp.ulng

FILE ERROR (FERR)

This is a standard file-error handler. All errors will be reported with
explanatory text, and the user has the choice of selecting retry or abort. On
some errors, he may also select overwrite or the choice to edit the name.
The return parameter is -1 if no file-error has been passed, 0 for abort or
ESC, 1 for retry, 2 for overwrite and 3 for edit.
The following errors are file-errors: -1, -2, -4 bis -13, -15, -16, -20, -22.
If option is non-zero, overwrite and edit will be presented if necessary.

The format of the parameter list:

fe_error equ $00 error code
 thp.ulng
fe_optns equ $04 options allowed
 thp.opt+thp.ubyt
fe_xpos equ $08 x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
fe_ypos equ $0c y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
fe_mainc equ $10 main colourway (-1, 0 to 3)
 thp.opt+thp.ulng
fe_actn equ $18 selected action
 thp.ret+thp.slng

- 11 -

READ STRING (RSTR)

The Read String function can be given a menu name, default name, request
text, size, position and menu attributes. The request can be longer than one
line. The text may contain CHR$(10) (linefeeds) or a backslash (will be
replaced by CHR$(10)). Please make sure that ROM code contains only
CHR$(10) and no backslashes! The routine works with a copy of the default
name. If a name is entered, D0 is passed back with 0 and the name is
returned to the return buffer. If the user presses ESC, D0 is returned with +1.
If D0 is not 0, the return buffer is not changed. The return buffer should be at
least 38 bytes long (if no size is given), but long enough for the longest
possible string. The cursor is positioned at the end of the string, unless the
top word of rs_chars is set to 1 (bit 0 of the MSW set), in which case it is
positioned at the start of the string. Other features can be selected by setting
other bits in the MSW: setting bit 2 will force the user to enter a value, an
empty string return is not allowed. Setting bit 4 will accept integers only.
Setting bit 5 will accept fractions and integers. If bit 6 is set, a negative sign
is allowed too. Setting bit 7 enables password entry (only asterisks are
shown, and the cursor cannot be moved). Setting bit 14 disables the function
of the [ESC] key in this menu.

The format of the parameter list:

rs_mennm equ $04 pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
rs_defnm equ $0c pointer to default name (or 0)
 thp.call+thp.opt+thp.str
rs_prmpt equ $14 pointer to prompt (or 0)
 thp.call+thp.opt+thp.str
rs_chars equ $18 LSW: nr of characters (0 defaults to 34),
 MSW: option-bits
 thp.opt+thp.uwrd
rs_xpos equ $1c x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
rs_ypos equ $20 y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
rs_mainc equ $24 main colourway (-1), ignored
 thp.opt+thp.ulng
rs_fname equ $2c pointer to filename return
 thp.ret+thp.str

- 12 -

VIEW FILE (VIEW)

This is the View File procedure. It is given the name of the file to be viewed,
an optional "start string", an optional "end string", the number of character
per line and menu attributes. The routine attempts to open a window as large
as possible. If the routine is unable to open the file, an error window is
overlaid. If the start and end strings are given, only that part of the file inside
these two strings is displayed. If nothing is given then the entire file can be
viewed. Minimum number of characters is 16.

The format of the parameter list:

vw_filnm equ $04 pointer to file name
 thp.call+thp.str
vw_start equ $0c pointer to start string (or 0)
 thp.call+thp.opt+thp.str
vw_end equ $14 pointer to end string (or 0)
 thp.call+thp.opt+thp.str
vw_chars equ $18 number of characters (or 0 defaults to 80)
 thp.opt+thp.uwrd
vw_mainc equ $1c main colourway (-1), ignored
 thp.opt+thp.ulng
vw_listc equ $20 list colourway (-1), ignored
 thp.opt+thp.nnul+thp.ulng

BUTTON (BUTN)

The Button procedure must be given a button name or a pointer to a sprite.
The sprite must not be larger than 40x20 pixels. Position and menu
attributes can also be given. The job which calls this procedure may not
have any windows open, otherwise the button cannot be positioned
correctly. It first tries to place the button in QPAC II's Button Frame. If it is
unable to do this, the position given is used.

The format of the parameter list:

bt_name equ $04 pointer to button name or to sprite
 thp.call+thp.str+thp.ulng
bt_xpos equ $08 x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
bt_ypos equ $0c y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
bt_mainc equ $10 main colourway (-1), ignored
 thp.opt+thp.ulng

- 13 -

EXTENDED BUTTON (XBTN)

The Extended Button function must be given a button name or a pointer to a
sprite. The sprite must not be larger than 40x20 pixels. Position and menu
attributes can also be given.
Optionally, there may be pointer to a second sprite. Instead of a pointer, the
value +1 print a WAKE symbol, the value +2 prints a "Changed but not
saved" symbol.
In the option control word set bits define:
 Bit 0 second sprite is separate item, which is selected with
 keystroke WAKE.
 Bit 8 second sprite should flash (WMAN 1.52 or higher).
 Bit 16 HIT is valid selection keystroke (Button immoveable).
 Bit 17 ESC is valid selection keystroke.
The routine returns the keystroke, which woke the button (0=ESC, 1=WAKE,
2=HIT, 3=DO). The job which calls this procedure may not have any
windows open, otherwise the button cannot be positioned correctly. It first
tries to place the button in QPAC II's Button Frame. If it is unable to do this,
the position given is used.

The format of the parameter list:

bt_name equ $04 ; pointer to button name
 thp.call+thp.str+thp.ulng
bt_xpos equ $08 ; x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
bt_ypos equ $0c ; y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
bt_mainc equ $10 ; main colourway (-1), ignored
 thp.opt+thp.nnul+thp.ulng
bt_spr2 equ $14 ; ptr to second optional sprite (or 1, 2)
 thp.opt+thp.ulng
bt_opts equ $18 ; option control word
 thp.opt+thp.ulng
bt_retp equ $20 ; button selection keystroke:
 thp.ret+thp.ulng

- 14 -

LIST SELECT (LIST)

List Select may be called for two different variations: one menu item may be
selected and the routine returns, and all items are available for selections. It
makes no difference whether the item is selected by hit or do. The return
parameter is the menu item number (counting starts at 0), or -1 for ESC or -2
for OK.
The second variation needs a status list, which contains the status of every
item in the list. The user may select or deselect as many items as required,
and the routine returns on OK or do only. The status list is returned with the
updated item statuses, and the return parameter contains the same values
as on the first variation.
The menu item list is passed as a 2-dimensional string array.
The status list is passed as a 1-dimensional integer array. If the status list
has not the same number of items, it is ignored. The less significant byte in
the word contains the status of the corresponding item: WSI.AVBL,
WSI.UNAV or WSI.SLCT (which is $00, $10 and $80). The most significant
byte is used for controlling whether the item can be edited. At the moment,
only bit 6 is used to signal that the item might be edited if set. Bit 0 is set on
return if the item has been edited. The other bits of the most significant byte
should be clear.
The bits in the menu-item-control-longword have the following meaning, if
set:
 Bit 0 the first character will be the selection keystroke, it is
 underscored.
 Bit 2 selection keystrokes will be placed in front of the items.
 Bit 4 the menu items will be centred.
 Bit 6 treat a [Hit] as a [Do]

Bits 0 and 2 are exclusive. All unused bits have to be set to zero!
The number of lines and columns is the maximum, so less lines or columns
may be used. The routine optimises the string length, if possible.

The format of the parameter list:

ls_mennm equ $04 ; pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
ls_itlty equ $08 ; item list type
 thp.call+thp.arr+thp.str
ls_itlst equ $0c ; item list
ls_stlty equ $10 ; status list type
 thp.upd+thp.opt+thp.arr+thp.uwrd
ls_stlst equ $14 ; item status list (or 0)
ls_mictl equ $18 ; menu-item-control
 thp.opt+thp.ulng
ls_lines equ $1c ; max number of lines (or 0)
 thp.opt+thp.uwrd
ls_colms equ $20 ; max number of columns (or 0)
 thp.opt+thp.uwrd
ls_xpos equ $24 ; x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd

- 15 -

ls_ypos equ $28 ; y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
ls_mainc equ $2c ; main colourway (-1), ignored
 thp.opt+thp.ulng
ls_listc equ $30 ; list window colourways (-1), ignored
 thp.opt+thp.nnul+thp.unlg
ls_item equ $38 ; pointer to return item number
 thp.ret+thp.uwrd

Do and Report (DORP)

Do and Report can be used for various reasons: either to report the progress
of an action and/or to report a final result. The menu can disappear
automatically after the action has been done, or wait for an OK, or wait for an
optional "Again", or, in error case, could allow "Abort" and "Retry". A good
example for this menu would be a menu which allows formatting a disk.

This menu needs a menu title, a textual description of the action, an optional
position and optional menu attributes, optional size specifier and, of course,
the address of the action routine.
This routine sets up a window, writes out what is going to happen, does the
action and reports the result from this action (e.g. format, makedir etc.). It is
also possible to report progress of the action.
If the user escapes (i.e. aborts), d0 is returned = +1.
The menu control bits define the following features (if bit set):
 Bit 0 do not wait for OK (just return)
 Bit 2 no error: allow Again; error: allow Retry and change OK

to Abort

The format of the parameter list:

do_mennm equ $04 ; pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
do_actds equ $0c ; pointer to textual action description (or 0)
 thp.call+thp.opt+thp.str
do_chars equ $10 ; number of characters for result string (default
 is 40)
 thp.opt+thp.uwrd
do_xpos equ $14 ; x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
do_ypos equ $18 ; y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
do_mainc equ $1c ; main colourway (-1), ignored
 thp.opt+thp.ulng
do_mictl equ $20 ; menu item control
 thp.opt+thp.ulng
do_pact equ $24 ; pointer to action routine
 thp.ulng

- 16 -

The action routine is called after the window has been drawn; it should
perform the action and return either an error or a result string. As a special
feature, the window is set to the result window, so that progress reports can
be printed, either directly (with short timeout) or by using WM.STIOB first
and then WM.IDRAW. The entry/exit parameters for the action routine are:

 Entry Exit

 D0.l 0 for first call, else set error or 0

 D1.l info window/object nr. smashed

 D3.w maximum result string length smashed

 A0 window channel ID preserved

 A1 ptr to window in wdef result string (if d0=0)

 A2 window manager vector preserved

 A4 window working area preserved

- 17 -

System-List Select (SYSS)

This is an easy method of selecting from lists which show system-relevant
information.
This menu needs a menu title, and a contents list type. At present, several
lists are available:
Hotkey stuffer buffer history (content type 0): all the strings, filenames etc.
which have been placed into the stuffer buffer history). Please note that as
long as there is no or just a current stuffer buffer entry available, no list will
appear. As soon as two or more entries exist, the list will show all of them.
There is also the possibility of getting lists of all currently running jobs
(content type 16), all things available in the whole system (content type 32),
and a list of executable things only (content type 34).
The return parameter is the selected item, e.g. stuffer buffer string, job-
name, thing-name.
Optional position and optional size control can also be specified.
The bits in the menu-item-control-longword have the following meaning, if
set:
 Bit 0 the first character will be the selection keystroke, it is
 underscored.
 Bit 2 selection keystrokes will be placed in front of the items.
 Bit 4 the menu items will be centred.

Bits 0 and 2 are exclusive. All unused bits have to be set to zero!
The number of lines and columns is the maximum, so less lines or columns
may be used. The routine optimises the string length, if possible.

The format of the parameter list:

ss_mennm equ $04 ; pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
ss_ctype equ $08 ; list contents type
 thp.opt+thp.ulng
ss_mictl equ $0c ; menu-item-control
 thp.opt+thp.ulng
ss_lines equ $10 ; max number of lines (or 0)
 thp.opt+thp.uwrd
ss_colms equ $14 ; max number of columns (or 0)
 thp.opt+thp.uwrd
ss_xpos equ $18 ; x position (or 0) of left hand side
 thp.opt+thp.nnul+thp.uwrd
ss_ypos equ $1c ; y position (or 0) of top
 thp.opt+thp.nnul+thp.uwrd
ss_mainc equ $20 ; main colourway (-1), ignored
 thp.opt+thp.ulng
ss_listc equ $24 ; list window colourways (-1), ignored
 thp.opt+thp.nnul+thp.unlg
ss_str equ $2c ; pointer to return string
 thp.ret+thp.uwrd

- 18 -

Character Select (CHSL)

Character select allows the user to select a charcter out of a list of
characters or the whole character set.
It needs an optional menu name, an option word, optional font for the
character table sub-window, optional position and optional colour attributes.
The return string may contain a character on call, which is used as default
"selected" character. The return string should be set to either 0 length or 1,
followed by the character. No other length should be given for future
compatibility reasons.
The current version will optionally position the pointer over a character. Bit
15 in the option bits has to be set and the most significant byte of this
longword (Bits 31..24) should contain the ASCII value of this character.
If the user escapes via ESC, the return value is a string with zero length and
D0 is set to +1. If the user leaves the menu with OK, the return string is set
to the selected character.
The availability bits are defined as follows (bits set for feature):
 Bit 0 non-printable characters
 Bit 1 digits
 Bit 2 lower-case characters
 Bit 3 upper-case characters
 Bit 4 remaining printable characters
 Bit 6 cursor control characters
 Bit 15 position pointer over character given in MSB.

The format of the parameter list:

ch_mennm equ $04 ; pointer to menu name (or 0)
 thp.call+thp.opt+thp.str
ch_avbit equ $08 ; availability bits
 thp.opt+thp.ulng
ch_avlbl equ $10 ; availability table (not implemented)
 thp.call+thp.opt+thp.arr+thp.uwrd
ch_font equ $14 ; font used for subwindow
 thp.opt+thp.ulng
ch_xpos equ $18 ; x position (or -1) of left hand side
 thp.opt+thp.nnul+thp.uwrd
ch_ypos equ $1c ; y position (or -1) of top
 thp.opt+thp.nnul+thp.uwrd
ch_mainc equ $20 ; main colourway (-1), ignored
 thp.opt+thp.ulng
ch_listc equ $24 ; table window colourways (-1), ignored
 thp.opt+thp.nnul+thp.ulng
ch_retst equ $2c ; pointer to return string
 thp.ret+thp.str

- 19 -

Get default settings (INFO)

This function allows the user to read a default setting which is configured
within the Menu Extension. At present, all eight default file extensions, all
eight default directories can be read as well as the pre-defined colours.
On entry to the call, an inquiry key is passed. The returned string is the
result.

The values for the inquiry keys currently defined are:
 0 .. 7 default extension 1 to 8 (6)
 32 .. 39 default directory 1 to 8 (38)
 64 default main colour (unused in current version)
 65 default sub-window colour (unused in current version)
 66 default button colour (unused in current version)
 96 default update-icon flash frequency (2)
 97 default delay for “hint” windows (2)
The minimum size for the return string is given in brackets.

The format of the parameter list:

inf_key equ $00 ; inquiry key
 thp.ulng
inf_ret equ $08 ; return string
 thp.ret+thp.str

Set default settings (SET)

This procedure allows the user to set a default, which can be read by other
programs using the INFO call (see above). The values for the inquiry keys
are exactly the same.

The format of the parameter list:

set_key equ $00 ; inquiry key
 thp.ulng
set_val equ $08 ; pointer to value string
 thp.call+thp.str

- 20 -

Files on the disk

The QMENU disk contains a lot of files. You will find several examples in
machine code and BASIC, useful key files for assembler programming,
useful utility routines and much more.

You can use the files to produce your own calls to Menu routines. You can
link them in if you find them useful.

The HELP files can be used together with the QD Help system. Just copy all
the files into the help system location and refer to the QD manual.

We have also put the “usermanual_txt” (printed further down in this manual
under “The User Side”) as a plain txt file onto the disk – you can take all of
this or relevant parts of it into your manual, if you produce a software product
which uses the Menu Extension.
Please contact J-M-S first for a license agreement – shipping the Menu
Extension together with your product is not expensive – just EUR 1.50 per
copy.

SuperBASIC-Interface

Entry is by procedures and functions in the normal manner. Optional
parameters, which are not required, are simply left out. If other parameters
are to follow the omitted ones, then a comma must be given for every
parameter omitted. Some examples can be seen below.

All menus except BUTTON_WAIT take for granted that the primary window
(#0 in SuperBASIC) has been outlined using the OUTLN command.

Please refer to the SMSQ/E manual if you need information about OUTLN.

- 21 -

FILE_SELECT$ ([menu_name] , [suggestion] , [directory] ,
[extension] , [size] , [x_pos , y_pos])

This function calls up a comfortable filename selection window.
If a DEV-device exists in your system, 'DEV' is not shown. Filenames passed
which start with DEV are automatically expanded, as well as DATA- or
PROG-Default, if they point to DEV.

The parameters are defined as follows:

menu_name: Title for the window.
suggestion: A filename is given for editing, which is then accepted with

OK. If the suggestion is an '_', all items except the
directory select item are set to unavailable. This allows the
programme to make sure that only existing files are
selected, or even only existing files with a given extension.
If the suggestion filename is just a single space “ “, then
the current hotkey stuffer buffer content is used instead.

directory: A listing of this directory is shown. Names such as

'flp1_exec_' or 'ram1_' can be given here. Enter -1 for the
current DATA default, or -2 for the current PROG default.

extension: For specified file endings. The ending should be no more

than four characters long, e.g. _bas or _ASM. If a directory
is specified, this will show only those files with this ending.
Subdirectory names excepted! If the ending ends in an '_',
this item is set to unavailable. Instead of an extension, a
filetype can be given (0, 1 or 2).

size: If this parameter is omitted, the window will be drawn as

large as possible. Here you can specify the number of
lines in a file name window (if scrollable, you lose one line
for the two arrow-blocks). To force a one-column window,
add +256.

 x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Examples:
LOAD FILE_SELECT$('Start BASIC program',,win1_basic_,_bas)

file$=FILE_SELECT$(,-1,,,7,,)

- 22 -

DIR_SELECT$ ([menu_name] , [lines] , [x_pos , y_pos] ,[-1],[-1],
[default_dir])

This function is used to select devices or subdirectories. Up to 8 directories
can be pre-set by the user (using CONFIG).

The parameters are defined as follows:

menu_name: Title for the window.
lines: If this parameter is omitted, the window will be drawn as

large as possible. Here you can specify the number of
lines in the directory window (if scrollable, you lose one
line for the two arrow-blocks). Adjust the window size here.

x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

default_dir: is the default directory which is given in the F2-item; here

starts the directory listing.

Examples:
PRINT DIR_SELECT$

directory$=DIR_SELECT$('Select drive',,0,0)

EXT_SELECT$ ([x_pos , y_pos])

This function is used to select a pre-defined file ending.

The parameters are defined as follows:

x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Example:
PRINT EXT_SELECT$

- 23 -

ITEM_SELECT ([menu_name] , [request] , option1 , [option2] ,
[option3] , [x_pos , y_pos] , [timeout])

This function enables the user to make a selection of one to three menu
options. The size of the window is automatically calculated in order that all
options and any request have enough room. The first letter of every menu
option is also used for keyboard selection. If a menu option is a string
containing only CHR$(27) (Escape), this string will be replaced by "ESC".
The ESC key is used for keyboard selection.
If the user ESCapes, the return value is 0. Otherwise it is 1 for option 1, 2 for
option 2, 3 for option 3. If a timeout has been given and nothing has been
selected, the return value is -3.

The parameters are defined as follows:

menu_name: Title for the window. Can be a string, or an error code

(which is automatically converted into the error string).
request: Explanatory test. It can be longer than one line, may

include CHR$(10) (linefeeds) or a backslash, which will be
replaced by CHR$(10). Please make sure that the ROM-
code contains only CHR$(10) and no backslashes!

option1: The first menu option, shown approximately in the centre

of the window.
option2: The second menu option, shown to the right of the first.
option3: The third menu option, shown to the left of the first.
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

timeout: An optional timeout can be given: multiply the number of

ticks (1/50th of a second) by 65536.

Examples:
PRINT ITEM_SELECT('Big choice',"Select any old thing\(even

 though it won't do anything)",'Wowee!',great,super)

PRINT ITEM_SELECT(-8,'Overwrite?',Yes,No)

PRINT ITEM_SELECT(,,more,CHR$(27))

- 24 -

REPORT_ERROR errorcode , [x_pos , y_pos] , [timeout]

This procedure reports an error and waits for the user to confirm this by a
keypress. If a timeout is given, the window disappears after this time even
without a keypress by the user.

The parameters are defined as follows:

errorcode: Standard QDOS errors (as in REPORT).
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

timeout: An optional timeout can be given: multiply the number of

ticks (1/50th of a second) by 65536.

Example:
REPORT_ERROR -7

FILE_ERROR (errorcode , [option] , [x_pos , y_pos])

This function reports a file-error and waits that the user selects between
"Retry" or "Abort". Optional, "Edit" or "Overwrite" may be offered for
selection, depending on the type of error. The return parameter is -1 if the
error is not a file system error, 0 for Abort (or ESC has been pressed), 1 for
retry, 2 for overwrite and 3 for edit.

The parameters are defined as follows:

errorcode: Standard QDOS errors (as in REPORT).
option: If non-zero, some errors allow "overwrite" or "edit".
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

- 25 -

READ_STRING$ ([menu_name] , [suggestion] , [request] ,
[length] , [x_pos , y_pos])

This function reads in a string, normally that of a filename.

The parameters are defined as follows:

menu_name: Title for the window.
suggestion: A string is given for editing, which is then accepted with

ENTER.
request: An explanatory text. It can be longer than one line, may

include CHR$(10) (linefeeds) or a backslash, which will be
replaced by CHR$(10). Please make sure that the ROM-
code contains only CHR$(10) and no backslashes!

length: Length of the string to be entered. If the value 65536 is

added to the length, the cursor is placed at the beginning
of the string, otherwise at the end. Adding more values to
it, gives you further options:
+2^16 position cursor at the start of the string.
+2^18 will force the user to enter a value, an empty

string return is not allowed.
+2^20 will accept integers only.
+2^21 will accept fractions and integers.
+2^22 a negative sign is allowed.
+2^23 enables password entry (only asterisks are
 shown, and the cursor cannot be moved).
+2^30 disables the function of the [ESC] key in this
 menu.

x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Example:
name$=READ_STRING$('READ IN NAME',ram1_suggestion,'Enter

filename or press ENTER',45)

- 26 -

VIEW_FILE filename , [start_string] , [end_string] , [width]

This procedure enables the user to view files. This can mean just looking at
the file or to show a HELP-type text.

The parameters are defined as follows:

filename: Name of file to be viewed. The entire name must be given.
start_string: If given, the file is searched for this string and displays it

from the position where the string is found. Attention: if the
string is not found, nothing is displayed!

end_string: If given, text is displayed only until this string is found. The

end string itself will not be displayed.
width: The width of the windows in characters (minimum 16). If

no width is given, the window is extended to its maximum
width.

x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Example:
VIEW_FILE flp1_BOOT

BUTTON_WAIT name , [x_pos , y_pos]

This procedure applies a button to the current job and waits for the user to
use it as a "wake up". The job may not have any open windows, otherwise a
correct positioning of the button cannot be guaranteed. If QPAC II's Button
Frame is present, the procedure will attempt to place the button there.

The parameters are defined as follows:

name: Name which will appear inside the button or address of

sprite definition (size maximum 40x20 pixels).
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Examples:
BUTTON_WAIT Test

BUTTON_WAIT "Press ENTER"

- 27 -

BUTTON_SELECT (name , [x_pos , y_pos] , [-1] ,
[second_sprite], [controlword])

This function applies a button to the current job and waits for the user to use
it as a "wake up". The job may not have any open windows, otherwise a
correct positioning of the button cannot be guaranteed. If QPAC II's Button
Frame is present, the procedure will attempt to place the button there. The
return parameter specifies the keystroke which woke the button:
 0 ESC
 1 WAKE (if second sprite was defined as separate item)
 2 HIT (if button immoveable)
 3 DO

The parameters are defined as follows:

name: Name which will appear inside the button or address of

sprite definition (size maximum 40x20 pixels).
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

second_sprite: There may be an optional second sprite which is placed

right to the name or first sprite in the button. Again, the
address of the sprite definition has to be given.
The value

+1 prints the WAKE-Symbol,
+2 prints the "Changed - please save" sprite.

controlword: To activate various features, add the values:

+1 Second sprite is separate item -
keystroke is WAKE.

+256 Second sprite should flash.
+65536 HIT is valid selection keystroke

(button immoveable).
 +131072 ESC is valid selection keystroke.

Example:
PRINT BUTTON_SELECT (Test,,,3,2,256+131072)

- 28 -

GET_DEFAULT$ (key)

allows the user to read all of the pre-defined default extensions and all of the
pre-defined default directories, used in the Extension-Select window and the
Directory-Select window respectively, as well as some other default settings.

The parameters are defined as follows:

key: inquiry key.

At present, values between 0 and 7 (inclusive) return the default extensions
1 to 8.
Values between 32 and 39 return the default directories 1 to 8.
64 to 66 return the colour combination for the main window, sub-window and
buttons, respectively. (Ignored in current version).
96 is the default update-icon flash frequency, used by XBTN, for example.
97 is the default delay for “hint” windows, used by QD (application program),
for example.

There is one special key: -1, which returns the version number of the
currently installed Menu Extension.

All other values return "bad parameter".

SET_DEFAULT key , value$

allows the user to set all of the pre-defined default extensions and all of the
pre-defined default directories, used in the Extension-Select window and the
Directory-Select window respectively, as well as some other default settings

The parameters are defined as follows:

key: inquiry key. All the values of GET_DEFAULT$ are allowed

here too.
value$ the value to be set into the default key location

Example:
SET_DEFAULT$ 4,”_XXX”

- 29 -

LIST_SELECT ([menu_name] , item$, status% , flags , [lines] ,
[columns] , [x_pos , y_pos])

Allows the selection of a single item out of a list of items. The return
parameter is either the index number of the item, -1 for ESC or -2 for OK.
If no status% is supplied, the function returns after the selection of one item.
If status% is supplied, the function returns on do or OK only. status% will be
updated on return. The first dimension of the item$-array and the dimension
of status% have to be the same, otherwise status% is ignored.

The parameters are defined as follows:

menu_name: Title for the window.
item$: A two-dimensional string array containing all items

(starting at 0!).
status%: A one-dimensional integer-array, containing the status for

every corresponding item. The values are:
 0 available
 128 selected
 16 unavailable
 16384 can be edited
 256 (on return) has been edited
flags: for menu-control: a 1 underscores the first character of

every items, this is used as selection keystroke, a 4 puts a
keystroke in front of the items, and a 16 centres the item.
64 turns a [Hit] into a [Do]

lines: maximum number of lines.
columns: maximum number of columns.
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

Examples:
10 DIM vers$(2,12)

20 vers$(0)='Letter'

30 vers$(1)='Small Packet'

40 vers$(2)='Printed matter'

50 PRINT LIST_SELECT('Please select',vers$,,,,3,2)

10 nr=10:DIM name$(nr,20),name%(nr)

20 RESTORE:name%(3)=128:name%(5)=16

30 FOR x=0 to nr:READ name$(x)

40 PRINT LIST_SELECT(,name$,name%,16)

50 DATA 'Paul','Fred','Christopher','Ann'

60 DATA 'Mary','Michael','David'

70 DATA 'Thomas','Christine','Stephanie','Nicholas'

- 30 -

SYS_SELECT$ ([menu_name] , [list-type] , flags , [lines] ,
[columns] , [x_pos , y_pos])

Allows the selection of a single item out of a list of items. The contents of the
list depend on the list type parameter:

Hotkey stuffer buffer history (list type 0) lists all the strings, filenames etc.
which have been placed into the stuffer buffer history). Please note that as
long as there is no or just a current stuffer buffer entry available, no list will
appear. As soon as two or more entries exist, the list will show all of them.
There is also the possibility of getting lists of all currently running jobs (list
type 16), all things available in the whole system (list type 32), and a list of
executable things only (list type 34).

The return parameter is the selected item, e.g. stuffer buffer string, job-
name, thing-name.

The parameters are defined as follows:

menu_name: Title for the window.
list-type: As described above.
flags: for menu-control: a 1 underscores the first character of

every items, this is used as selection keystroke, a 4 puts a
keystroke in front of the items, and a 16 centres the item.

lines: maximum number of lines.
columns: maximum number of columns.
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

- 31 -

CHAR_SELECT$ ([menu_name] , [available_bits%] , , [font] ,
[x_pos , y_pos])

Character select allows the user to select a charcter out of a list of
characters or the whole character set.
It needs an optional menu name, an optional availability byte, optional font
for the character table sub-window, optional position and optional colour
attributes.
If the user escapes via ESC, the return value is a string with zero length. If
the user leaves the menu with OK, the return string is set to the selected
character.

The parameters are defined as follows:

menu_name: Title for the window.
available_bits%: Define the character range to be used. If 0, the whole

character set is used:
 +1 non-printable characters
 +2 digits
 +4 lower-case characters
 +8 upper-case characters
 +16 remaining printable characters
 +64 cursor control characters
font: Address of a standard font, which is used for the character

table.
x_pos,y_pos: These define the position of the window. If these

parameters are omitted, the current pointer position is
used.

- 32 -

The User Side

As the Menu Extension is usually supplied with programs which use the
Pointer Environment, the following instructions assume that you are familiar
with the Pointer Environment itself, otherwise you should read the section of
the documentation first which explains how to use the Pointer Environment
(it really should be somewhere in the main manual). Just for a quick
reminder: [Hit] means, point to an item and press [SPACE] or the left mouse
button, [Do] means, press [ENTER] or the right button while you are over an
item.

The FILE SELECT window

The FILE SELECT window is always shown when the user is required to
enter or select a filename. Here you can enter the filename either directly or
edit a suggested one by selecting the menu option directly beneath the
request. Beneath this are two menu options with which you can recall the
contents of the HOTKEY buffer and all previous contents. Just select the
menu option and the contents will be written to the "suggested" area.
Confirm with OK and the input will be accepted by the system. You can also
edit the name, of course. Select it with [F3] or point to it and press [SPACE]
or [Hit] with the mouse button. When the cursor flashes, you can edit the
string. [ESC] brings you back into "pointer mode".

Most of the rest of the window concerns the current drive. You will see two
sub-windows, the right hand (larger) one will only show the filenames, the
smaller one on the left only the subdirectories. In these windows all the files
are sorted alphabetically (unless you configured the sort off). The files will be
taken from the current drive and must all have the correct extension, or
ending (if any). The extensions for sub-directories are ignored, because
subdirectories don't really have extensions. Now you can edit the drive
and/or the ending. Depending on how you configured the Menu Extension,
you will either get the full (complete) file- and directory-name, or just
anything which comes behind the current directory or device name (e.g. if
the current directory is WIN1_TEXT_ and it contains the files
WIN1_TEXT_FRED and WIN1_TEXT_PAUL, only FRED and PAUL will be
shown).

You can get quickly into the file-list subwindow by pressing [TAB], or into the
subdirectory-window by pressing [SHIFT] [TAB].

If you press [F2] or [Do] at the directory menu option, a further window is
overlaid, from which you can select pre-defined devices and sub-directories
(see Directory-Select below). If you just select a directory, the list of files will
be updated. You can also "update" it by selecting the lightning symbol or by
WAKEing up the job to which the window belongs, should this be hidden.

- 33 -

If you press [UNDO] or [CTRL] [ALT] [Cursor UP] then the "Ext:" menu
option will be cleared, so that all files will be shown. If you [Do] the "Ext:"
menu option, then a window overlay will show some suggested extensions
(see EXTENSION SELECT below). If you press [F4] you will get directly into
the extension select menu, regardless of the current extension setting. If you
press CTRL 0, CTRL 1 or CTRL 2(does not work on any keyboard layout,
sorry!) then you will see TYPE 0, TYPE 1 or TYPE 2 instead of an extension.
Only those files are listed which match the filetype: TYPE 0 is used for most
files including text files, TYPE 1 shows executable programs only, TYPE 2
all relocatable files (which usually end in _REL).
If the extension starts with an underscore, then this underscore is
automatically internally converted into a "." for DOS disks (e.g. the extension
is _TXT, but if you look at a DOS-Disk, it will list all files ending with .TXT).

Above the current directory is a list of available devices, e.g. WIN or FLP.
There are also drive numbers from 1 to 8 listed. To select FLP1_, press [F]
and [1], and the directory window displays FLP1_. If a filename is already
suggested in the F3-Filename-location, e.g. ram1_test_bas, then a [Do] on
one of the devices will automatically change the device in the filename field
as well, e.g. in the example above, a [Do] on WIN will change the filename to
win1_test_bas.

Above the file list you will see an arrow "<-". By selecting this option you can
retrace a step back along the subdirectory tree without having to edit
anything. So if you're in directory FLP1_TEXT_PAUL and select this once,
then you get to FLP1_TEXT_. The next time you select it, you get FLP1_. If
you select a subdirectory in the lefthand subwindow, then you'll "get in", i.e.
the name will be taken over for the directory and the file and subdirectory list
read in again.

But to get back to the list of files: You can select any file you like. [SPACE]
or [Hit] accepts the name as "suggested" and enables the cursor, so that you
can edit it. [ENTER] or [Do] takes the name and carries out an OK
automatically. If the window is too small to show all the suitable files, the
normal scroll arrow will appear in order to scroll the next batch of names up
the screen. You can also select files or directories by pressing the character
which is in front of the name.

At the right you will see a scrolling bar. Move the mouse pointer to this area,
[Hit] and the area will be shown relative to the total area. [Do] at this area
and the window will split, enabling you to control the two parts indepently
from each other. Move to the split and [Do] to join the window together
again. If you are already in the filelist-subwindow and you press [TAB], the
cursor jumps over the bar. Another [TAB] brings you back to the centre of
the filelist. For the directory-subwindow, [SHIFT] [TAB] does the same.

- 34 -

The file-select has got two other facilities: you can get a list of the whole
directory tree, i.e. all sub-directories from the current level downwards are
"expanded" into all filex they contain. This gives you a better overview. But
beware, the tree option may take a long time, especially on higher levels on
heavily filled harddisks. Therefore, tree is de-selected automatically when
you "move up" in the tree.

You can also have a quick look at the file before you select it for load. Select
the View item first, then hit the file you want to view. You can view it now
until you press [ESC]. If you think this is the right file, select OK 'cause the
filename has moved to the suggestion. You can also [Do] while you are over
the filename, as [Do] ignores the state of the view item.

You can construct a new filename very easy: choose the required device
and subdirectory in the left part of the window. Then, make sure the filename
extension is right. If you press [F5] now, the current directory and the current
extension will be used as the "suggestion" and the cursor is placed exactly
between directory and extension. All you have to do now is: type in the
missing part of your filename. If you would like to save a file called
"win1_source_qd_fred_asm" and you are already in the directory
"win1_source_qd_" and the extension is "_asm", then just press [F5] and
type in "fred".

Every filename selected with [Do] or [OK] will also be stuffed into the
HOTKEY Buffer, so that it can be immediately selected from somewhere
else, or the next time you pop up a file-select window.

And this brings us to the HOTKEY Buffer area of the window: There you’ll
find two items: Current and Previous. The HOTKEY Buffer stores selected
filenames (e.g. if you select files in QPAC2 or save a file in QD etc.) so that
you can access the filename later with a single click. If you [Hit] the Current
item, the current hotkey buffer contents are brought into the filename
window. If you [Do] the Current item, the current contents are used directly,
the file with the filename stored therein is loaded.
The HOTKEY buffer also stores a number of previously selected filenames.
If you [Hit] the Previous item, then it cycles through the previously stored
names every time you hit it. If you [DO] the Previous item however, then you
get a list of all the previously stored filenames (provided there is a list).
Otherwise, nothing happens.

Finally, there is the [F10] Fileinfo II item. Fileinfo II is freeware, and you can
obtain it from many sources. You should read the Fileinfo II manual which
comes with Fileinfo II and configure it to suit your needs. What [F10] does is:
it will call Fileinfo II with the currently selected filename (in the F3 – Filename
item) so that Fileinfo II can carry out any action configured for it.

- 35 -

The DIRECTORY SELECT window

This window allows the selection of different drives resp. subdirectories.

The user can pre-set the eigth most used subdirectories; they can be
selected in the left sub-window. Use the MENUCONFIG program to pre-set
the subdirectories on the MENU_rext file. If one of the preset directories is
hit, it moves to the suggestion at the top of the window. If it is DOne, this
selection is returned to the calling program. If the selected subdirectory does
not exist, the device is searched for matching names in higher levels. If, for
example, you select FLP1_BACKUP_TXT_ and there is no such directory on
FLP1_, then only FLP1_ is shown. If the directory BACKUP exists, you will
see FLP1_BACKUP_.

The currently installed drive systems (MDV, RAM, FLP or WIN, for example)
are selectable immediately, together with the eight different possible drive
numbers. If selected, the suggestion changes and the list of subdirectories is
read in again.

The right sub-window displays the subdirectories which exist in the current
directory level. This window behaves exactly in the same way as the
subdirectory-window in FILE-SELECT does.

[F2] allows you to edit the current suggestion.

"DATA Default" sets the suggestion to the current setting of the system's
data default directory, which is usually set using the DATA_USE command,
or QPAC 2's SYSDEF, for example. The same applies to "PROG Default".

To configure the subdirectories please use the program MENUCONFIG and
configure the file MENU_rext.

If the Menu Extension itself is not built into ROM or EPROM, but loaded into
RAM, you will see an "Edit" item being available. If you select this item you
can edit all of the eight pre-defined directories and save a new configured
version of the Menu Extension directly afterwards. Press ESC here if you do
not want to save it, or give the filename. If you modify the suggested
filename for the Menu Extension, this modification is also saved together
with the new preset directories.

- 36 -

The EXTENSION SELECT window

This window serves to select the most usual file extension. Move to a menu
option and press [SPACE] or [ENTER] to select. You can also use the
number keys [1] to [8] to select the menu options. All ten extensions may be
set by the user using MENUCONFIG, or, if the Menu Extension is in RAM,
by selecting the Edit item - it behaves exactly like the Edit facility in
DIRECTORY SELECT (see above). 'No' returns no extension, i.e. an empty
string.

The ITEM SELECT window

When you see a window with one to three menu option, you can make your
selection by pressing [SPACE] or [ENTER]. You could also press the first
letter of the option.

The READ STRING window

You are asked to enter a string or filename. Under certain circumstances you
may be offered a suggested name. You can either press [ENTER] to accept
the suggestion, edit it as usual using the cursor keys or just enter a new
string.

The VIEW FILE window

This window enables you to view a file. You can scroll one line by pressing
[SPACE] or the left mouse button while the pointer is over the view-window.
You can scroll one page by pressing [ENTER] or the right mouse button. The
lightning-symbol lets you start again viewing the file from the beginning.
Selecting WRAP causes any line, which exceeds the permitted width, to be
continued on the next line.

The BUTTON

If a program is in Button mode, then you can wake this up by moving to the
button area and pressing [ENTER]. If the button is not positioned inside the
button frame, you can move the button by using [SPACE]. In some buttons
you will also see a lightning symbol next to the name. This symbol allows
you to WAKE the program. If you see a flashing disk-symbol right to the
name, then this is used to remind you that you have changed the data with
this program, but not saved this modified data. Some buttons also react on
[ESC], which removes the button and the corresponding program.

- 37 -

Configuring the Menu Extension

We suggest that you use MenuConfig to configure the settings in the Menu
Extension.

You will find three configuration blocks: General, Directory Select and
Extension Select.

General contains the following configurable items:

Filename of Menu Extension: fairly self-explanatory. If you modify

the Menu Extension (using the Edit item in some menus), you
can save the modifications to this pre-defined filename.

Flash-Frequency for update icon: used by XBTN, for example. You

can pre-define the behaviour of the flashing icon in four steps,
from steady (not flashing) through three flashing speeds. The
setting can be read and overwritten with the INFO and SET
calls in machine code, or GET_DEFAULT$ and
SET_DEFAULT in BASIC).

Delay for hints: here you can specify a timeout for little hint windows

to pop up (if the program supports hints, like QD does).
Previously called “icon explain”, but “hint” is the better term.

Alphabetic order in File-Select: very self-explanatory. We cannot

even remember why this was made configurable, as an
alphabetic order seems to be the most useful thing here.

Selection keystrokes in File-Select: dates back to old times, where

the screen was limited to 512x256 and users wanted to get
more information into the window.

Short filenames in File-Select: also dates back a long time. For

level 2 devices it must be set to “no” – otherwise it can result in
crashes!

Directory Select: contains the eight pre-defined directories for the Directory

select menu. The setting can be read and overwritten with the INFO and
SET calls in machine code, or GET_DEFAULT$ and SET_DEFAULT in
BASIC).

Extension Select: contains the eight pre-defined file extensions for the

Extension select menu. The setting can be read and overwritten with the
INFO and SET calls in machine code, or GET_DEFAULT$ and
SET_DEFAULT in BASIC).

- 38 -

The Scrap Extension

The Scrap Extension provide the routines to support cutting and pasting
between application programs using the Scrap. It can also be used to
transfer data within an application. All data that is cut or copied gets into the
Scrap. If it is text, then it may overwrite the previous contents of the Scrap,
or it may be added. Graphic always overwrites the previous contents. In
case of text data the Scrap is a kind of a large Stuffer Buffer.

The Scrap is designed to transfer relatively small amount of data. Text size
is limited to +32767 characters (standard QDOS string), but may contain
<LF>'s to separate lines.

The Scrap Extension comes with the resident extension MENU_rext. It adds
the thing 'Scrap Extensions'. The first try to put data into the Scrap creates a
new thing, called 'Scrap'. The contents of the Scrap are kept until the Scrap
is removed or new data overwrites it.

Using the Scrap Extension is done in the same way Menus is used. The
Extensions currently implemented are:

CLR Clear Scrap and return memory to system.

INFO Returns information about the state of the Scrap and its contents.

PUT Overwrites or adds data.

GET Reads data from Scrap.

The routines to use and free the Scrap Extensions need the same
parameters which Menus need. You will find the routines for doing this in the
library, the names are UT_USSCP and UT_FRSCP.

The fourth character of Extension IDs which have only three characters must
be SPACE.

There are five types currently defined:

text 0 standard SMSQ/E string
sprite 2 standard sprite definition
blob 4 standard blob definition
pattern 6 standard pattern definiton
area 8 standard partial save area

- 39 -

CLEAR SCRAP (CLR)

This routine is used to return the memory used by the Scrap to the System.
No parameters.

SCRAP INFO (INFO)

Returns information on current scrap. If the Scrap Thing does not exist, the
type returned is -1. In this case, the other two parameters are returned
undefined.

The format of the parameter list:

sci_dtyp equ $04 current type
 thp.ret+thp.ubyt
sci_mcnt equ $0c scrap modify count
 thp.ret+thp.uwrd
sci_bufl equ $14 buffer length minimum for current scrap contents
 thp.ret+thp.ulng

SCRAP PUT (PUT)

This is the SCRAP PUT function. It is used to add or overwrite the contents
of the Scrap. If the Scrap does not exist, then it is created. If the type is 0
(string), then scp_flln should be zero to overwrite the previous contents or
non-zero to add it to a string which is already in the Scrap. If the action to put
the code into the Scrap is needs more code than just copying a string, a
routine may be supplied to do this job.

The format of the parameter list:

scp_dtyp equ $03 type of data to write
 thp.opt+thp.ubyt
scp_strg equ $08 source string (if type=0) or base address of
 graphic data
 thp.call+thp.str+thp.ulng
scp_flln equ $0c add string flag (if type=0) or length of data
 thp.opt+thp.ulng
scp_uccd equ $10 user-supplied copying code
 thp.opt+thp.ulng

- 40 -

SCRAP GET (GET)

This is the SCRAP GET function. It is used to read the contents of the Scrap.
If the code to copy the data has to be complex, the address of a user-
supplied copy-code may be given. In this case, scg_dest and scg_bufl may
be 0.

The format of the parameter list:

scg_dtyp equ $03 type of required data
 thp.opt+thp.ubyt
scg_dest equ $04 destination address for data
 thp.opt+thp.ulng
scg_bufl equ $08 length of destination buffer
 thp.opt+thp.ulng
scg_uccd equ $0c user-supplied copy-code
 thp.opt+thp.ulng

User-supplied Copy-Code

 Entry Exit

 D0 0, +1 or error

 A5 ptr to Scrap Thing preserved

 All registers except D0 must be preserved

The structure to which A5 points is:

scp_type equ $08 b type of current SCRAP contents
scp_mcnt equ $0a w scrap modify count
scp_maxs equ $0c l maximum size of scrap
scp_ussz equ $10 l current size used
scp_data equ $14 data

- 41 -

SuperBASIC Interface

There are new commands which allow to clear the Scrap and add contents.
Data may be read using new functions.

SCRAP_CLEAR
removes the Scrap from the Thing list and returns the memory used by it to
the system.

SCRAP_PUT [0],string$,[addflag]
puts text into the Scrap. The first 0 is the type, which may be ommitted (0 is
default).

The parameters are defined as follows:

string$: The string to be inserted or added.
addflag: If ommited or 0, the string$ overwrites the previous

contents. If 1, string$ is added to the previous string.

Examples:
SCRAP_PUT 0,'This will be put into the Scrap'

SCRAP_PUT ,' and this will be added.',1

SCRAP_PUT type,address,length
puts any kind of graphic objects into the Scrap.

The parameters are defined as follows:

type: The types currently allowed are:

 sprite 2 standard sprite definition
 blob 4 standard blob definition
 pattern 6 standard pattern definiton
 area 8 standard partial save area
address: Memory start address of grahic object.
length: Length in bytes of object.

SCRAP_LEN
is a function which returns the size of memory which is necessary to keep
the current scrap contents.

- 42 -

SCRAP_TYPE
returns the type of the current scrap contents.

SCRAP_CNT
returns the scrap modify count, to check whether the scrap contents have
changed or not.

SCRAP_GET$
is a function which returns a string which contains the contents of the scrap,
if it is type text. If not, an empty string is returned.

SCRAP_GET
is a function which returns an address with a copy of the current scrap
contents, if it is graphical data (type <> 0). If not, the returned parameter is 0.
It is the user's responsibility to release the memory (e.g. SuperToolkit's

RECHP addr or CLCHP).

