
QMAKE

V4

Make Program

for the GST/Quanta Assembler & Linker

©1993-2002 by Bernd Reinhardt

Distributed by Jochen Merz Software

QMAKE 1

Introduction

QMAKE allows you to make the handling of the Assembler and Linker for
assembler programs much more easier and more automatic. It combines
all the things of which we thought they are necessary during 8 years of
assembly language development. QMAKE is extremely helpful for the
development of modular programming and large projects.

QMAKE works on an standard LINK control file which is directly suitable
for the GST/Quanta Linker. Additional options are possible, but if they
are used in the link control file then the link file cannot be processed
directly by the Linker anymore, it has to be processed through QMAKE.

Not all of the features work with the original GST Macro Assembler and
Linker, and we recommend that you use it together with the latest
Quanta version of both programs. Especially if you encounter strange
behaviour of QMAKE together with the assembler/linker, ensure you
have the latest versions of QMAC and QLINK. At the time the manual is
written, QMAC is Version 1.06 and QLINK is Version 1.03.

QMAKE also supports the Tony Tebby Linker, which is much faster than
the GST/Quanta Linker, but does not support all instructions. So beware
- if you get the correct result using QLINK and then get a different result
using TTs linker, you are probably using one of the features not
supported by TTs linker.

Before you start using QMAKE, we suggest you have a look at the confi-
guration options. Without adjusting QMAKE to your system (at least
specify the linker you're using) it may not produce the result you expect.

QMAKE 2

Linker Control file

The standard linker control file (_link) instructions are passed to the
linker, with the following exceptions:

INPUT filename_REL
read in a file ending in _REL and include all modules into the link.
QMAKE looks for the same filename, ending in _ASM, and compares the
date of both files. If the _ASM file is younger, then it is automatically
assembled before it is linked. Instead of a _REL file a _LIB file can also
be used for INPUT, which puts all modules into the result. With Force
Assembly activated, INPUT _LIB's are also force assembled.

INPUTN filename_REL
read in a file ending in _REL and include all modules into the link.
QMAKE does not check for a corresponding _ASM file, it simply passes
the _REL file without any checks to the linker. This is very useful if
you've got some _REL files without having any _ASM files for them.

LIBRARY filename_LIB
searches the filename ending in _LIB for all unresolved references in the
link and, if found, includes any module which is required. How to
construct _LIB files is also explained in this manual.

Instead of passing a full library, only a single _REL file can be specified.
It is checked and treated exactly like INPUT would do, but the linker uses
the modules only if required (i.e. XREFed by another module).

Any filename may contain one ore more substitution strings, which are
expressed by a hash followed by a number. This allows you to create
various versions with the same template control file, for example
versions in different languages. QMAKE allows you to use up to 10
different substitution strings, numbered from 0 to 9. The first three ones
offer most options, and 3 to 9 can be set during make time (it is very
unlikely that you might need more than two anyway).

QMAKE 3

Summary of instructions

Instr. Extens. Action Result for Linker
input _rel search for _asm and if not found input _rel

if _rel older than _asm: assemble input _rel

inputn _rel do nothing input _rel

input _lib search for _cctx and _cct and if not found input _lib

_cctx found: _lib older than _cctx: append new _lib input _lib

_cct found: all _rel files older than _asm: assemble ...

... if any assembly happened: append new _lib file input _lib

library _rel if _rel older than _asm: assemble library _rel

library _lib search for _cctx and _cct and if both not found library _lib

_cctx found: _lib older than _cctx: append new _lib library _lib

_cct found : all files _rel older _asm => assemble

_cct found: all _rel files older than _asm: assemble ...

... if any assembly happened: append new _lib file library _lib

QMAKE 4

Here is an example of a fairly complex control file, called
win1_QD_LINK:

data 5k some dataspace - it is executable
common dummy required for the window definitions
section base here is the order of the various sections
section version
section language
section sprite
section program
section utility
program win1_qd_#0 this is the output file name, language substituted
input win1_qd_head_rel various files which have to be used
input win1_qd_parsstr_rel
input win1_qd_version_rel
input win1_qd_sprites_rel
input win1_qd_setup_rel
input win1_qd_conf_prepost_rel
input win1_qd_usemenu_rel
input win1_qd_util_lib use all of util_lib
library win1_util_strg_lib but only required modules from strg_lib
input win1_qd_#0_rel here is the language-specific text part
input win1_qd_conf_gen_#0_rel and various language-specific config files
input win1_qd_conf_files_#0_rel
input win1_qd_conf_edit_#0_rel
input win1_qd_wdef_lib we need complete window definitions
input win1_qd_init_rel
input win1_qd_initthg_rel
input win1_qd_act_lib and also all action routines
library win1_util_pars_lib but only parts of the following libraries
library win1_wut_lib
library win1_util_sprite_lib
library win1_util_menus_lib
library win1_uti_lib uti_lib first time
input win1_qd_thgif_rel again, everything is required
input win1_qd_edit_lib
input win1_qd_qtypchk_rel
input win1_qd_interface_rel
library win1_util_gut_lib gut contains some useful routines
input win1_qd_line_numbers_rel but the line numbering has to be complete
library win1_util_cv_lib finally some useful libraries
library win1_lang_#0_lib
library win1_uti_lib there might be more in here

QMAKE 5

When this file is parsed by QMAKE, it generates a linker control file
which will be recognised by the standard linker. The file will be called
filename win1_QD_TMP_LINK which looks like this:

data 5k
common dummy
section base
section version
section language
section sprite
section program
section utility
input win1_qd_head_rel
input win1_qd_parsstr_rel
input win1_qd_version_rel
input win1_qd_sprites_rel
input win1_qd_setup_rel
input win1_qd_conf_prepost_rel
input win1_qd_usemenu_rel
input win1_qd_util_lib
library win1_util_strg_lib
input win1_qd_English_rel
input win1_qd_conf_gen_English_rel
input win1_qd_conf_files_English_rel
input win1_qd_conf_edit_English_rel
input win1_qd_wdef_lib
input win1_qd_init_rel
input win1_qd_initthg_rel
input win1_qd_act_lib
library win1_util_pars_lib
library win1_wut_lib
library win1_util_sprite_lib
library win1_util_menus_lib
library win1_uti_lib
input win1_qd_thgif_rel
input win1_qd_edit_lib
input win1_qd_qtypchk_rel
input win1_qd_interface_rel
library win1_util_gut_lib
input win1_qd_line_numbers_rel
library win1_util_cv_lib
library win1_lang_English_lib
library win1_uti_lib

Notice that all the #0's are replace by "English" - giving the right file
name.
In the example above, win1_uti_lib is given as a library twice. This is, as
the code size is fairly critical and therefore the order of the sections is
important, part of the library routines are put into the centre of the file
and the rest of it, which is referenced from code after the first "library",
comes at the very end.

You probably know how to create a linker control file yourself, and now
let's do some real work with the program.

QMAKE 6

First you have to configure it so that it knows the right names used on
your system. Execute the MenuConfig program and select QMAKE so
that you can configure it. QMAKE's configuration possibilities are divided
into three blocks: General, window and substitution. Here is a list of the
current configuration options in General:

Linker type
Leave it set to "GST/Quanta", unless you use Tony Tebby's much faster
QJUMP linker, which is not available yet. Please note that not all linker
directives are supported by TTs linker.

Assembler control
Defines the assembler control which is passed to the assembler, in case
files have to be assembled. You know what the options "Errors", "Nolist"
and "List" mean - if not, refer to the assembler manual.

Linker control
Here you've got "CRF" for cross reference, "MAP" for ordinary map or
"nothing" for nothing.

Nowinds
Can be used on the improved Quanta version of the assembler and
linker to turn off any visible output.

Keep Warnings
Usually, files containing no errors but warnings are deleted. If this option
is set to YES, then warnings are kept. In addition, the warnings which
warn for $59 and $5A which warn for XREF's are replaced by spaces,
giving a better overview over the rest of the files. You are probably more
interested in branches which could be short etc. You can choose whether
QMAKE should get rid of _ERR or _LIST files which contain warnings
but no errors, to keep your harddisk tidied up.

Filter Warnings
Optionally, QMAKE can remove the warnings $59 and $5A (which are
XREF out of range warnings) for you to give you a better overview over
the remaining warnings. This is sometimes very helpful, especially if you
have many XREF.S from window definitions, for example.

Name of Assembler-Thing
If files have to be assembled, QMAKE first looks for an assembler Thing,
and if not found, then looks for an assembler executable file. You can
delete the name here to disable the use of an assembler Thing.

QMAKE 7

Name of Linker-Thing
As above, but for the linker.

Assembler Name
Here is the filename of the assembler - which is used if the Thing is not
defined or not found.

GST Linker Name
As above, but for the GST/Quanta linker.

QJUMP Linker Name
As above, but for the TT QJUMP linker.

File Extension for QMake Command file
This is usually LINK, but it can be set to any other name (but there's no
reason why).

Make-Index Name
Enter here the name of the make_index_obj filename, which creates an
index file for QD's HyperHelp. If you haven't got at least QD Version 5,
ignore it. The \X option in QMAKEs command string will execute the
program specified here after the make run.

Beep after successful operation
As the name says, successful operations are reported to you with a
BEEP.

Assembler source file extension
Usually, assembler source filenames end in _ASM. If you wish to change
this, then you can do it here.

Relocatable object file extension
Usually, relocatable filenames end in _REL. If you wish to change this,
then you can do it here.

More than one QMAKE
Specifies if you want to run more than one QMAKE at the same time. If
you want to run more than one QMAKE at the same time, QMAKE adds
a job ID to the temporary link file name.

QMAKE 8

Next, the Window config block:

Initial size
Defines if the window appears in the maximum or minimum possible size
(not very useful on 512x256 pixel displays, but very useful on higher re-
solutions).

Size
Here you specifiy the initial size of the window.

Origin
This and the following two items deal with the window origin.

Colourways
Choose your favourite colours.

The third configuration block allows you to define three default strings for
the three first substitution strings.

QMAKE 9

Execution

Now let us start doing something with QMAKE. When QMAKE is
executed, it turns into a button. It assumes a link control file in the
current directory, specified by the DATA default. You will see the last
part of the directory name in the button. When you DO on the button (i.e.
press the right mouse button or ENTER or RETURN), QMAKE grows up
to its full size. If you hit the Button (press the left mouse button or
SPACE) or if you WAKE it (e.g by a WAKE HOTKEY) then
QMAKE starts its job.

Let us assume that you see the full window of QMAKE. At the top, you
find the standard item for move, resize (DO on this item toggles between
minimum size and maximum size), Quit, Wake (starts the action) and
sleep (turns QMAKE into button). Below it, any action is usually reported
(unless you configured QMAKE, the assembler or the linker not to do it).

In the centre, you see the command file (usually ending in _LINK or
whatever you configured). Select this item to choose another command
file. The big 'DO' which is the same as a wake, it simply does the job. In
the Status menu, you can turn beeping on and off, make an Index file
(for HyperHelp in QD Version 5 or 6), or make all three language-
versions (English, German and French are default substitutions for string
#0, and a make run is done for every language).

All allows you to change all substitution strings. A Hit in the main window
cycles through the pre-defined strings of every substitution for #0 to #2, a
Do allows you to edit the current setting.

"Nowinds" can be used only if your assembler and linker knows the
nowinds option (Quanta's does, GST's old does not). If nowinds is
selected, QMAKE turns into a button during make time, showing only
what is going on (assembling or linking). If it is not selected, the window
stays big and the action is reported within in the QMAKE window. If
QMAKE finds an error during assembly or link, a view window appears
and QMAKE tries to start listing at the first error (but does not always
succeed in doing so). Anyway, you can scroll through the error report to
find the error(s). The error window does not appear for errors, just for
warnings. When the assembly and link is successful, QMAKE beeps (if
told so) and waits. If there was a warning during link (something, which
might be ignored most of the time, but could be useful to note
sometimes), two exclamation marks are added to the button name. By

QMAKE 10

the way, the button may be covered by other windows while being active.

At the bottom you can choose different options for the assembler and
linker list file in case you're not happy with your configuration. You find
three other items above which control the main work of QMAKE. "Link if
possible" is self-explanatory. "Inhibit assembly" does not assemble files,
even if the source is younger than the relocatible. "Force assembly" does
not look at the file dates, it simply assembles all the files specified by
INPUT in the link control file. This options should be used if global keys
or data INCLUDE files in the assembler source have changed!

We already explained that the decision whether a file has to be
assembled or not depends on the file dates of the _ASM and _REL files.
If a file is to be INPUTted and the file name does not end in _REL, then
QMAKE assumes that it is okay and does not look for a corresponding
_ASM file. Otherwise, both file date are compared and if the _ASM file is
older, QMAKE knows that the _REL file is in good state. Otherwise, the
_ASM file is assembled.

The last menu item left is "Concatenate". It allows you to do a manual
concatenation of a library concatenation file. Any library file (which has to
end in _LIB) has to have a concatenation control file (which has to end in
_CCT or _CCTX). As a library file consists of concatenated _REL files,
QMAKE needs to know which files it has to check and to concatenate.
Therefore, a _CCT (or _CCTX) is merely a list of _REL files, but the full
filename is required (including drive). An example:

win1_util_menus_fsel_rel
win1_util_menus_chsl_rel
win1_util_menus_dsel_rel
win1_util_menus_xsel_rel
win1_util_menus_fileerr_rel
win1_util_menus_dorp_rel
win1_util_menus_view_rel
win1_util_menus_yesno_rel
win1_util_menus_retryquit_rel
win1_util_menus_reqstrg_rel
win1_util_menus_rperr_rel
win1_util_menus_button_rel
win1_util_menus_itsl_rel
win1_util_menus_list_rel
win1_util_menus_swreqst_rel

As you can see, only full filenames are listed. When you select "Concate-
nate", you are requested to select a _CCT or _CCTX file. QMAKE
checks all _REL file dates with the corresponding _ASM files in the same
way it does for the INPUT files, and assembles if required. Finally, if one
or more files had to be assembled, all _REL files are concatenated

QMAKE 11

resulting in a new _LIB file.

If an error is generated during a Concatenation run, it is stopped. You
can re-run the concatenation process by DOing the Concatenate item.

The concatenation process is, of course, done automatically every time
QMAKE finds a reference to a _LIB file in the linker control file. When
QMAKE finds a _LIB reference, it searches for the corresponding _CCT
or _CCTX file and, if found, does the same check as described above for
the manual procedure, provided, the file date of the _CCT file is younger
than the date of the _LIB file.

The difference between _CCT and _CCTX is that a _CCT is always pro-
cessed and checked, especially if Force assembly is on. Force assembly
does not, however, force the re-assembly of files contained in a _CCTX
library!

QMAKE 12

Dependencies

You can give single or a list of files which are checked in addition to the
normal checks to decide whether other files have to be assembled or
not. Let us say, you include some keys in an assembler source file.
Some of the keys can change without the need to re-assemble the file,
but if other keys change which contain important values like memory
allocation sizes, then this file has to be re-assembled. As QMake
compares the dates of the _ASM and _REL files only to see if the file
has to be re-assembled, changing the keys-file would not force it to re-
assemble. You can now define relationships to other files.

!! file1[,file2,file3...]
will compare the dates of the file(s) given with the date of the file defined
in the next line. Example:
!! win1_keys_test
INPUT win1_fred_asm

This will re-assemble fred_asm if fred_asm itself has changed (i.e. the
file is more recent than fred_obj) or if keys_test has changed (i.e.
keys_test is more recent than fred_obj).

You can set up a list of files which is checked on all following files until
the list is modified or cancelled:

!+ file1[,file2,file3...]
adds files to the list.

!- file1,[file2,file3...]
removes files from the list.

!---
removes all files from the list.

Example:
!+ win1_keys_test,win1_keys_demo check these files too
INPUT win1_fred_asm .. when these files are
INPUT win1_joe_asm ... checked at make time
!- win1_keys_demo dont check this one
INPUT win1_anne_asm ... when this is checked
!--- wipe list
INPUT win1_jack_asm normal mode

QMAKE 13

Startup parameters
QMAKE can work automatically by passing it a command string. Current
options for the command string are:

\B make all languages & kill job
\C Command-File define command file (w/o filename extension)
\E0 turn off beep
\E1 enable beep
\F1 force assembly
\I1 inhibit assembly
\K0 don't keep warnings
\K1 keep warnings
\L0 nolink
\L1 link if possible
\M0 to \M3 main window colourways
\O0 nowinds
\O1 open window
\Q quiet mode, don't open window
\S0 to \S3 subwindow colourways
\T0 don't filter warnings
\T1 filter warnings
\U0 to \U3 button colourways
\X execute BASIC program before QMAKE ends

make run
\0 String Default 1 for Substitute #0
\1 String Default 2 for Substitute #0
\2 String Default 3 for Substitute #0
\3 String Default 1 for Substitute #1
\4 String Default 2 for Substitute #1
\5 String Default 3 for Substitute #1
\6 String Default 1 for Substitute #2
\7 String Default 2 for Substitute #2
\8 String Default 3 for Substitute #2

The maximum length for substitution strings is 10 characters.

You cannot combine "open window" and "quiet mode"; QMake will not
start with such a setting.

QMAKE 14

Other QMAKE link file commands
Please note that not all link file commands are supported by all linkers!

ABS
forces the assembler to generate absolute code (requires assembler
1.04 or higher)

EX basicprogramm_bas or _sav
allows the execution of an SBASIC program during make. This can be
used to automatically generate zipped files after link or copy the result to
a different directory or device etc.

GST
tells QMAKE to ignore the QMAKE configuration settings and use the
GST linker for this link.

INCBIN file
Include binary file (Quanta assembler only)

PC
forces the assembler to generate PC-relative code (requires assembler
1.04 or higher)

QJUMP
tells QMAKE to ignore the QMAKE configuration settings and use the
QJUMP linker for this link.

S2RECORD value where value is a decimal number
It then generates file with the filename extension _SREC, containing the
result from the link in standard Motorola S2-Record, starting at address
value. This command is interpreted by QMAKE only, it is not passed to
the Linker.

QMAKE 15

Other features

Finally, when the make action is in progress, the name found after the
PROGRAM directive in the link file (i.e. the result after the LINK) is
stuffed into the HOTKEY buffer, ready to be EXECuted, LRESPRed or
QMONed. For your convenience this happens twice, at the start of the
MAKE progress and at the end (you have have done some other work
during the make process).

QMAKE uses RAM8_ for all its temporary files and log files etc. Have a
look at RAM8_ if you do not exactly know what is going on. Here you
also find a special log file of all files assembled by QMAKE - this can be
very useful for maintaining older versions of the same source file.

QMAKE 16

