QBASIC

This manual describes the BASIC-Interface between QD anidbépator. In
order to be able to use it, you require the editor QD (Version Bersion 6) and
the BASIC compiler QLiberator (preferably Version 3.35 oomm recent). It is
throughout this manual assumed that you already read theatzaof QD and
QLiberator - it still describes the various steps in setiingp and using it in
detail. A reference to the other manuals is made wherevairesty

The principle: QBASIC is a resident extension, which haseddaded in the
way resident extension always have to be loaded: using tliESER command.
Before you do this, you have to configure this extension t&erigfit into your
system setup. After you LRESPR&BASIC rext, you will find that a new
Thing for QD has been installed. It's called QBASIC, of ceuSee also the QD
manual for extension things. When a BASIC program is typed QD (or
loaded, of course), then this Thing can be called by predsity which then
presents a menu which allows you to call the parser. The palszrks the
program for syntax errors. In case it is sytax-error-free,garser generates a file
which can then be compiled by QLiberator (similar to the wiilds created by
QSAVE and the LIBERATE command). The program is then condpéad
executed, if the compilation is successfull. QD is immegliatvailable again -
you can edit the source program while the compiled code isingn- you can
also execute multiple programs from the source-text.

How to do it: first of all the fileQBASIC_rext has to be configured. Execute
the programCONFIG or MenuConfig and load in the fileQBASIC_rext. You
will find thre configuration items which all have to do with.@erator:

QLiberator thingname: QLIB. If you have QLiberator installed as a Thing (or
you will install it as a Thing), then enter here the name thmdnas got. There
are various possibilities how QLiberator could be loaded &king - if you don't
know any of these then you probably do not have the possilfilie. THING
extension) to do it. It is not a disaster, as QBASIC's seavclafThing is very
quick, and it then searches for QLiberator in a file - you wok notice the Thing
search.

QLiberator filename: flp1_QLIB_obj. This is the full filename of the QLibera-
tor file in your system. If you use the QLiberator master ditihen it is
flp1_QLIB_obj. If you have QLiberator somewhere on your ddisk, then
specify the full filename on the harddisk.

QLiberator options: empty. Here you can define the various compiler options
which can be passed to QLiberator for compilation (for exaNOWINDS).
Have a look at the details in the QLiberator manual for theoveasr compiler
options.

That's it - not a lot to setup. The so configured file can bedéshnow -
remember, it's a resident extension.

QBASIC Copyright 1994 Jochen Merz Software 1

Starting QD with BASIC facilities if you want to start a QD Withe BASIC
interface, then you have to tell this QD right at the begignifhis is very
simple: just pass a key with the parameter string (a detadlestription of
various options is given in the QD manual). Examples:

EXEP QD;"\T QBASIC" if QD has been loaded resident before or
EX flpl QDN"\T QBASIC" starts QD from floppy disk.

Both starts QD and uses the QBASIC Thing. If you'd like to havall BASIC
environment, for example the HyperHelp BASIC System in Qientuse

EXEP QD;"\70BASIC \Eflpl basic help \E bas \Dflpl basic "

The \T defines the Thing” QBASIC, \H defines the directory fbe help
information (if you have it on harddisk, specify the full slitectory), \E defines
the default extension _BAS (‘cause you want to load and s&&® programs,
probably), and \D defines the default directory for thosesfie.g. flp1l_BASIC .

Whatever you did to execute QD, let's assume you have now auRQiing
and you see the QBASIC text in the menu item next to F10. If thetn you've
definitely done something wrong.

Within QD, you can load, save, edit or enter BASIC program.afspecial
feature, you can create line-numberless program! Of cpuB€TO will not
work anymore if there are no line numbers.

If you want to compile the BASIC program which is currenthidhén QD,
then pres$-10. If nothing happens, then the QBASIC thing is not presentodr n
properly installed (can't think of a way of not properly mltihg it). But, be
positive and let's assume it works: you will see a menu whildwa you to
choose between the following options: change the pre-eléfacompiler-options
(e.g. to set -NOWIND option - see QLiberator manual) or if yjoat want to
compile the program or both compile and execute on success.

Let's have a go:

FOR x=32 10 191

PRINT x,CHR§(x)

END FOR x

INPUT wait$

Press=10 Execute now and off we go. A QBASIC window appears at the top
left corner of the screen (it is under QLiberator, and QLa&lber always appears
there, even on higher screen resolutions). After a verytshoment, QLiberator
appears and compiles the program. As it is very unlikely ithéds an error in
the program listed above unless you made a typing mistakell ialso execute
the program. The program prints the characters and waitsENTER or
RETURN to be pressed. Do it and the program disappears.

QBASIC Copyright 1994 Jochen Merz Software 2

Let's deliberately generate an error: add the following tmthe program:

==]

and move the cursor somewhere on the screen (but leave iinvilte QD
window) to see the effect, then preB40 Execute. The cursor will jump
immediately over the second '=', as the parser thinks tlsemesiyntax error (and
is perfectly right, isn't it?).

Or try the following:

PRINT HEX$(12345,16

and try agairF10 Execute. The cursor is put at the end of the line, as the parser
is missing a closing bracket, and assumes it to be missirgy dfie last
parameter. Of course, it could be missing after the firsaypeater, but it is more
unlikely. But, as we know, the HEX$ function requires twoaraeters, and the
parser has guessed right. Another example:

PRINT LEN('123':PRINT LEN('4567")

The cursor is put after the string '123', directly over thvooThe parser knows
that something is missing here (close bracket, of coursel)tflze new statement
is treated only if the previous syntactic expression is okayu see, the parser is
quite good in guessing where mistakes are.

Things which the parser does not like

Lines which are longer than the maximum line length to whicb @
configured (i.e. lines which start with the character). That's not accepted! If
you require longer lines (default setting is 160), thenaefigure QD.

Let's carry on with the explanation of QBASIC: please exedite first
sample (error-free please) program which prints out theacers. Do not press
ENTER. Have a look at the job list. You will find a job called ARI1_". As you
have not named the program which you compiled and execumdmgets the
name where the source file is created: RAM1_. Naming it iy easy: save the
program before you compile it (you should do this anywayt asuld crash and
then everything you have entered is gone!). Let's call thée fi
RAM1_TEST_BAS. Recompile and guess how the job is named - just "TEST"!

BAS is only the file-extension which helps you recognising file in a big file
list, and RAM1_ is the drive, which has nothing to do with a judme either.
You see, QBASIC tries to give jobs a sensible name if possible

QBASIC Copyright 1994 Jochen Merz Software 3

Now have a look at the directory of RAM1_. You will see thrdedi(or maybe

more):

TEST_BAS you just saved it!

TEST_OBJ the executable program generated by QLiberator.
TEST_ERR contains usually warnings and errors (if there are any,

but the program was okay.

The OBJ-file is executable, you can execute it as often as you like X,
QX, QPAC 2's files menu or Cueshell, for example) withoubrapiling it via
QD every time.

The ERR-file contains no errors, otherwise QBASIC would have shgwaun the
error file automatically. Easy to force an error: add thdofwing line to the
progam and try to compile and execute it:

fred 500

with the assumption, that you have not defined a proceduliedc&RED
somewhere in your system, the compiler reports "ambigoosehaBefore doing
this, it terminates compilation and wait for the SPACE kepéogpressed. Rather
superflous, but this can be patched. You will find a prografmctv patches
QLIB_obj to suppress to pause for SPACE - more later. OkagspSPACE
now and a window appears which shows you the error. You canl shrough
the error file to see all the errors, if there are more. Thisetithere's not a lot to
scroll through. You should not try to execute a program widithnot compile
without errors - this could lead to a crash.

On to the warnings: write a short program like:

EX]

OPEN #a,con

(LS #a

INPUT #a,a$

and try to execute this. QLiberator will wait for the SPACEy/geess unless you
patched it already 'cause it is so boring, then QBASIC opesedextor box with
three choices: back to the Editor brings you back into QDhabyou can have a
look at possible problems. Try execution tries to executd, iit fails, then it
fails. The compiler should trap run-time-errors, which Icolobe generated by the
warnings (which is explained very detailed in the QLiberat@nual). You can
also view the warning files - exactly like in an error case tHeRR-file is
displayed.

Patch QLiberator

You will find a file called PATCHQLIB bas on the QBASIC disk. This
automatically patches QLIB_obj to remove the annoying SBA€juest in error
case. It also changes the colours so that it better fits in eergwhite
environment, which seems to be the most common. Just LRUNrdggam, but
please change the working copy and NOT the master disk. Paighversion
3.35 (don't get confused, V3.36 contains a QLIB_obj V3.38y dhe runtimes
are 3.36).

QBASIC Copyright 1994 Jochen Merz Software 4

QBASIC Copyright 1994 Jochen Merz Software

