
QBASIC
This manual describes the BASIC-Interface between QD and QLiberator. In

order to be able to use it, you require the editor QD (Version 5or Version 6) and
the BASIC compiler QLiberator (preferably Version 3.35 or more recent). It is
throughout this manual assumed that you already read the manuals of QD and
QLiberator - it still describes the various steps in settingit up and using it in
detail. A reference to the other manuals is made wherever required.

The principle: QBASIC is a resident extension, which has to be loaded in the
way resident extension always have to be loaded: using the LRESPR command.
Before you do this, you have to configure this extension to make it fit into your
system setup. After you LRESPRedQBASIC_rext, you will find that a new
Thing for QD has been installed. It's called QBASIC, of course. See also the QD
manual for extension things. When a BASIC program is typed into QD (or
loaded, of course), then this Thing can be called by pressingF10, which then
presents a menu which allows you to call the parser. The parser checks the
program for syntax errors. In case it is sytax-error-free, the parser generates a file
which can then be compiled by QLiberator (similar to the workfiles created by
QSAVE and the LIBERATE command). The program is then compiled and
executed, if the compilation is successfull. QD is immediately available again -
you can edit the source program while the compiled code is running - you can
also execute multiple programs from the source-text.

How to do it: first of all the fileQBASIC_rext has to be configured. Execute
the programCONFIG or MenuConfig and load in the fileQBASIC_rext. You
will find thre configuration items which all have to do with QLiberator:
QLiberator thingname: QLIB. If you have QLiberator installed as a Thing (or
you will install it as a Thing), then enter here the name the Thing has got. There
are various possibilities how QLiberator could be loaded asa Thing - if you don't
know any of these then you probably do not have the possibility (i.e. THING
extension) to do it. It is not a disaster, as QBASIC's search for a Thing is very
quick, and it then searches for QLiberator in a file - you willnot notice the Thing
search.
QLiberator filename: flp1_QLIB_obj. This is the full filename of the QLibera-
tor file in your system. If you use the QLiberator master disk, then it is
flp1_QLIB_obj. If you have QLiberator somewhere on your harddisk, then
specify the full filename on the harddisk.
QLiberator options: empty. Here you can define the various compiler options
which can be passed to QLiberator for compilation (for example, -NOWINDS).
Have a look at the details in the QLiberator manual for the various compiler
options.

That's it - not a lot to setup. The so configured file can be loaded now -
remember, it's a resident extension.

QBASIC Copyright 1994 Jochen Merz Software 1



Starting QD with BASIC facilities if you want to start a QD with the BASIC
interface, then you have to tell this QD right at the beginning. This is very
simple: just pass a key with the parameter string (a detaileddescription of
various options is given in the QD manual). Examples:
EXEP QD;"\T QBASIC" if QD has been loaded resident before or
EX flp1_QDM"\T QBASIC" starts QD from floppy disk.
Both starts QD and uses the QBASIC Thing. If you'd like to havea full BASIC
environment, for example the HyperHelp BASIC System in QD, then use
EXEP QD;"\TQBASIC \Hflp1_basic_help_ \E_bas \Dflp1_basic_"
The \T defines the Thing QBASIC, \H defines the directory forthe help
information (if you have it on harddisk, specify the full subdirectory), \E defines
the default extension _BAS ('cause you want to load and save BASIC programs,
probably), and \D defines the default directory for those files, e.g. flp1_BASIC_.

Whatever you did to execute QD, let's assume you have now a QD running
and you see the QBASIC text in the menu item next to F10. If not,then you've
definitely done something wrong.

Within QD, you can load, save, edit or enter BASIC program. Asa special
feature, you can create line-numberless program! Of course, GOTO will not
work anymore if there are no line numbers.

If you want to compile the BASIC program which is currently held in QD,
then pressF10. If nothing happens, then the QBASIC thing is not present or not
properly installed (can't think of a way of not properly installing it). But, be
positive and let's assume it works: you will see a menu which allows you to
choose between the following options: change the pre-defined compiler-options
(e.g. to set -NOWIND option - see QLiberator manual) or if youjust want to
compile the program or both compile and execute on success.

Let's have a go:
FOR x=32 TO 191
PRINT x,CHR$(x)

END FOR x
INPUT wait$
PressF10 Execute now and off we go. A QBASIC window appears at the top
left corner of the screen (it is under QLiberator, and QLiberator always appears
there, even on higher screen resolutions). After a very short moment, QLiberator
appears and compiles the program. As it is very unlikely thatit finds an error in
the program listed above unless you made a typing mistake, itwill also execute
the program. The program prints the characters and waits forENTER or
RETURN to be pressed. Do it and the program disappears.

QBASIC Copyright 1994 Jochen Merz Software 2



Let's deliberately generate an error: add the following line to the program:
q==1
and move the cursor somewhere on the screen (but leave it within the QD
window) to see the effect, then pressF10 Execute. The cursor will jump
immediately over the second '=', as the parser thinks there is a syntax error (and
is perfectly right, isn't it?).

Or try the following:
PRINT HEX$(12345,16
and try againF10 Execute. The cursor is put at the end of the line, as the parser
is missing a closing bracket, and assumes it to be missing after the last
parameter. Of course, it could be missing after the first parameter, but it is more
unlikely. But, as we know, the HEX$ function requires two parameters, and the
parser has guessed right. Another example:
PRINT LEN('123':PRINT LEN('4567')
The cursor is put after the string '123', directly over the colon. The parser knows
that something is missing here (close bracket, of course), and the new statement
is treated only if the previous syntactic expression is okay. You see, the parser is
quite good in guessing where mistakes are.

Things which the parser does not like

Lines which are longer than the maximum line length to which QD is
configured (i.e. lines which start with the→ character). That's not accepted! If
you require longer lines (default setting is 160), then re-configure QD.

Let's carry on with the explanation of QBASIC: please execute the first
sample (error-free please) program which prints out the characters. Do not press
ENTER. Have a look at the job list. You will find a job called "RAM1_". As you
have not named the program which you compiled and executed, it just gets the
name where the source file is created: RAM1_. Naming it is very easy: save the
program before you compile it (you should do this anyway, as it could crash and
then everything you have entered is gone!). Let's call the file
RAM1_TEST_BAS. Recompile and guess how the job is named - just "TEST"!
_BAS is only the file-extension which helps you recognisingthe file in a big file
list, and RAM1_ is the drive, which has nothing to do with a jobname either.
You see, QBASIC tries to give jobs a sensible name if possible.

QBASIC Copyright 1994 Jochen Merz Software 3



Now have a look at the directory of RAM1_. You will see three files (or maybe
more):
TEST_BAS you just saved it!
TEST_OBJ the executable program generated by QLiberator.
TEST_ERR contains usually warnings and errors (if there are any,

but the program was okay.

TheOBJ-file is executable, you can execute it as often as you like (use EX,
QX, QPAC 2's files menu or Cueshell, for example) without recompiling it via
QD every time.
TheERR-file contains no errors, otherwise QBASIC would have shownyou the
error file automatically. Easy to force an error: add the following line to the
progam and try to compile and execute it:
fred 500
with the assumption, that you have not defined a procedure called FRED
somewhere in your system, the compiler reports "ambigous name". Before doing
this, it terminates compilation and wait for the SPACE key tobe pressed. Rather
superflous, but this can be patched. You will find a program which patches
QLIB_obj to suppress to pause for SPACE - more later. Okay, press SPACE
now and a window appears which shows you the error. You can scroll through
the error file to see all the errors, if there are more. This time, there's not a lot to
scroll through. You should not try to execute a program whichdid not compile
without errors - this could lead to a crash.

On to the warnings: write a short program like:
a=3
OPEN #a,con
CLS #a
INPUT #a,a$
and try to execute this. QLiberator will wait for the SPACE keypress unless you
patched it already 'cause it is so boring, then QBASIC opens aselector box with
three choices: back to the Editor brings you back into QD, so that you can have a
look at possible problems. Try execution tries to execute, and if it fails, then it
fails. The compiler should trap run-time-errors, which could be generated by the
warnings (which is explained very detailed in the QLiberator manual). You can
also view the warning files - exactly like in an error case the_ERR-file is
displayed.

Patch QLiberator

You will find a file called PATCHQLIB_bas on the QBASIC disk. This
automatically patches QLIB_obj to remove the annoying SPACE request in error
case. It also changes the colours so that it better fits in a green/white
environment, which seems to be the most common. Just LRUN theprogram, but
please change the working copy and NOT the master disk. Patchonly version
3.35 (don't get confused, V3.36 contains a QLIB_obj V3.35, only the runtimes
are 3.36).

QBASIC Copyright 1994 Jochen Merz Software 4



QBASIC Copyright 1994 Jochen Merz Software 5


