
QPC
Concepts

The Concepts Reference Guide describes concepts relating to SBASIC and QPC. It is best to
think of the Concept Guide as a source of information. If there are any questions about SBASIC
or QPC itself which arise out of using the emulator or other sections of the manual then the
Concept Guide may have the answer. Concepts are listed in alphabetical order using the most
likely term for that concept. If the subject cannot be found then consult the index which should
be able to tell you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be entered
and run. Examples listed without line numbers are usually simple commands and it may not
always be sensible to enter them into the emulator in isolation.

This guide is a combination of the Sinclair QL manuals Concepts section, the (Super)Gold card
manual, the Toolkit 2 manual, the QPAC2 (Extended Environment), the SMSQ/E manual, and
the QPC manual.

© 1984 SINCLAIR RESEARCH LIMITED
© MIRACLE SYSTEMS
© 1994-2002 TONY TEBBY
© MARCEL KILGUS

QPC V3.30 SMSQ/E V3.09 Release V1.01

2 03/05

arrays
Arrays must be DIMensioned before they are used. When an array is dimensioned the value of
each of its elements is set to zero or a zero length string if it is a string array. An array
dimension runs from zero up to the specified value. There is no limits to the number of
dimensions which can be defined other than the total memory capacity of the computer. An
array of data is stored such that the last index defined cycles round most rapidly:

the array defined by

DIM array(2,4)

will be stored as

0,0 low address
0,1
0,2
0,3
0,4
1,0
1,1
1,3
1,4
2,0
2,1
2,2
2,3
2,4 high address

Command Function

DIM dimension an array
DIMN find out about the dimensions of an array

03/05 3

background
The screen background (the area beneath any open windows) can be set to a plain or stippled
colour, or an image.

BGCOLOUR_QL sets the background to one of the QL mode colours, or stipple patterns.
Background colours and stipples are defined in the same way as normal QL mode colours as
used in INK, PAPER etc.

BGCOLOUR_QL 255 Sets the background colour to a black and white check
BGCOLOUR_QL 1 Sets the background colour to blue

BGCOLOUR_24 sets the background colour to one of the 16 Million (24 Bit) true colours, The
background colour is defined in the same way as normal 24 Bit colours as used in INK, PAPER
etc.

BGCOLOUR_24 40 Sets the background colour to deep blue

BGIMAGE allows the use of a background image instead of a solid colour. The image which is
stored in a file, is loaded by.

BGIMAGE win1_wallpaper Load a wallpaper

Background images must be in the form of a screen snapshot at the screen resolution you are
using. To create a background image.

100 WINDOW SCR_XLIM,SCR_YLIM,0,0 : REMark Full screen
.
. Draw the wallpaper on the screen
.

900 SBYTES_O win1_wallpaper,SCR_BASE,SCR_LLEN * SCR_YSIZE

Generating a screen image in this way as a program, prevents the cursor and the save
command spoiling the generated image.

--
Command Function

--
BGCOLOUR_QL set background to a solid colour or stipple
BGCOLOUR_24 set background to a solid colour
BGIMAGE load a background image

--

4 03/05

BASIC
SBASIC includes most of the functions, procedures and constructs found in other dialects of
BASIC. Many of these functions are superfluous in SBASIC but are included for compatibility
reasons:

GOTO use IF, REPEAT, etc
GOSUB use DEFine PROCedure
ON...GOTO use SELect
ON...GOSUB use SELect

Some commands appear not to be present. They can always be obtained by using a more
general function. For example, there are no LPRINT or LLIST statements in SBASIC but output
can be directed to a printer by opening the relevant channel and using PRINT or LIST.

LPRINT use PRINT #
LLIST use LIST #
VAL not required in SBASIC
STR$ not required in SBASIC
IN not applicable to 68000 processor
OUT not applicable to 68000 processor

 --

comment: Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be
able to convert the internal codified form of the value of a string expression to or
from the internal codified form of the value of a numeric expression.

These functions are redundant in SBASIC because of the provision of a unique
facility referred to as "coercion". The VAL and STR$ functions are therefore not
provided.

break
If at any time the computer fails to respond or you wish to stop a SBASIC program or command
then press

[CTRL] [SPACE]

A program broken into in this way can be restarted by using the CONTINUE command.

Screen output may be paused by pressing either CTRL F5, or the ScrLock key.

To switch between a full screen display and a window, press SHIFT CTRL F12

To perform a soft reset, (restart SMSQ)

[CTRL] [SHIFT] [ALT] [TAB]

To terminate QPC

[CTRL] [SHIFT] [ScrLock]

QPC can also be ended with the QPC_EXIT command from SBASIC, or the "X"
(close) button on the Windows title bar.

03/05 5

channels
A channel is a means by which data can be output to or input from a QPC device. Before a
channel can be used it must first be activated (or opened) with the OPEN command. Certain
channels should always be kept open: these are the default channels and allow simple
communication with QPC via the keyboard and screen. When a channel is no longer in use it
can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel number. A channel number is a numeric expression
preceded by a #. When the channel is opened a device is linked to a channel number and the
channel is initialised. Thereafter the channel is identified only by its channel number. For
example:

OPEN #5,SER1

Will link serial port 1 to the channel number 5. When a channel is closed only the channel
number need be specified. For example:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usually there is
more than one way in which the device driver can be activated. This extra information is
appended to the device name and passed to the OPEN command as a parameter. See
concepts device.

Data can be output to a channel by PRINTing to that channel; this is the same mechanism by
which output appears on the QPC screen. PRINT without a parameter outputs to the default
channel #1. For example:

10 OPEN #5,flp1_test_file
20 PRINT #5,"this text is in file test_file"
30 CLOSE #5

will output the text "this text is in file test_file" to the file test_file. It is important to close the file
after all the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input from a
channel a character at a time using INKEY$

GET, PUT, and their variations can also be used to output and input from a channel. GET and
PUT allows data to be sent and read from a channel with more control than simply PRINTing
and INPUTing.

A channel can be opened as a console channel; output is directed to a specified window on the
QPC screen and input is taken from the QPC keyboard. When a console channel is opened the
size and shape of the initial window is specified. If more than one console channel is active then
it is possible for more than one channel to be requesting input at the same time. In this case, the
required channel can be selected by pressing CTRL C to cycle round the waiting channels. The
cursor in the window of the selected channel will flash.

6 03/05

QPC has three default channels which are opened automatically. Each of these channels is
linked to a window on the QPC screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

 --
Command Function

OPEN open a channel for I/O
CLOSE close a previously opened channel
PRINT output to a channel
INPUT input from a channel
INKEY$ input a character from a channel
GET unformatted input from a channel
PUT unformatted output to a channel

03/05 7

2 1

0

character set
and keys
The cursor controls are not built in to the operating system: however, if these functions are to be
provided by applications software, they should use the keys specified; also the specified keys
should not normally be used for any other purpose.

--
Decimal Hex Keying Display/Function

--

0 00 CTRL £ NULL
1 01 CTRL A
2 02 CTRL B
3 03 CTRL C Change input channel (see note)
4 04 CTRL D
5 05 CTRL E
6 06 CTRL F
7 07 CTRL G
8 08 CTRL H
9 09 TAB (CTRL I) Next field
10 0A ENTER (CTRL J) New line / Command entry
11 0B CTRL K
12 0C CTRL L
13 0D CTRL M Enter
14 0E CTRL N
15 0F CTRL O

16 10 CTRL P
17 11 CTRL Q
18 12 CTRL R
19 13 CTRL S
20 14 CTRL T
21 15 CTRL U
22 16 CTRL V
23 17 CTRL W
24 18 CTRL X
25 19 CTRL Y
26 1A CTRL Z
27 1B ESC (CTRL SHIFT |) Abort current level of command
28 1C
29 1D CTRL SHIFT]
30 1E
31 1F

32 20 SPACE
33 21 SHIFT 1 !
34 22 SHIFT 2 "
35 23 # #
36 24 SHIFT 4 $
37 25 SHIFT 5 %
38 26 SHIFT 7 &
39 27 ' '
40 28 SHIFT 9 (
41 29 SHIFT 0)
42 2A SHIFT 8 / Prt Screen *
43 2B SHIFT = +
44 2C , ,
45 2D - -
46 2E . .
47 2F / /

8 03/05

--
Decimal Hex Keying Display/Function

--

48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT ; :
59 3B ; ;
60 3C SHIFT . <
61 3D = =
62 3E SHIFT . >
63 3F SHIFT / ?

64 40 SHIFT ' @
65 41 SHIFT A A
66 42 SHIFT B B
67 43 SHIFT C C
68 44 SHIFT D D
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT I I
74 4A SHIFT J J
75 4B SHIFT K K
76 4C SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT O O

80 50 SHIFT P P
81 51 SHIFT Q Q
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V V
87 57 SHIFT W W
88 58 SHIFT X X
89 59 SHIFT Y Y
90 5A SHIFT Z Z
91 5B [[
92 5C \ \
93 5D]]
94 5E SHIFT 6 ^
95 5F SHIFT - _

03/05 9

--
Decimal Hex Keying Display/Function

--

96 60 SHIFT 3 £
97 61 A a
98 62 B b
99 63 C c
100 64 D d
101 65 E e
102 66 F f
103 67 G g
104 68 H h
105 69 I i
106 6A J j
107 6B K k
108 6C L l
109 6D M m
110 6E N n
111 6F O o

112 70 P p
113 71 Q q
114 72 R r
115 73 S s
116 74 T t
117 75 U u
118 76 V v
119 77 W w
120 78 X x
121 79 Y y
122 7A Z z
123 7B SHIFT [{
124 7C SHIFT \ |
125 7D SHIFT] }
126 7E SHIFT # ~
127 7F SHIFT ESC ©

128 80 CTRL ESC ä
129 81 CTRL SHIFT 1 ã
130 82 CTRL SHIFT ' å
131 83 CTRL SHIFT 3 é
132 84 CTRL SHIFT 4 ö
133 85 CTRL SHIFT 5 õ
134 86 CTRL SHIFT 7 ø
135 87 CTRL ' ü
136 88 CTRL SHIFT 9 ç
137 89 CTRL SHIFT 0 ñ
138 8A CTRL SHIFT 8 z
139 8B CTRL SHIFT = œ
140 8C CTRL , á
141 8D CTRL - à
142 8E CTRL . â
143 8F CTRL / ë

10 03/05

--
Decimal Hex Keying Display/Function

--

144 90 CTRL 0 è
145 91 CTRL 1 ê
146 92 CTRL 2 ï
147 93 CTRL 3 í
148 94 CTRL 4 ì
149 95 CTRL 5 î
150 96 CTRL 6 ó
151 97 CTRL 7 ò
152 98 CTRL 8 ô
153 99 CTRL 9 ú
154 9A CTRL SHIFT ; ù
155 9B CTRL ; û
156 9C CTRL SHIFT , ß
157 9D CTRL = ¢
158 9E CTRL SHIFT . ¥
159 9F CTRL SHIFT / `

160 A0 CTRL SHIFT 2 Ä
161 A1 CTRL SHIFT A Ã
162 A2 CTRL SHIFT B Å
163 A3 CTRL SHIFT C É
164 A4 CTRL SHIFT D Ö
165 A5 CTRL SHIFT E Õ
166 A6 CTRL SHIFT F Ø
167 A7 CTRL SHIFT G Ü
168 A8 CTRL SHIFT H Ç¨
169 A9 CTRL SHIFT I Ñ
170 AA CTRL SHIFT J Æ
171 AB CTRL SHIFT K Œ
172 AC CTRL SHIFT L α alpha
173 AD CTRL SHIFT M δ delta
174 AE CTRL SHIFT N θ theta
175 AF CTRL SHIFT O λ lambda

176 B0 CTRL SHIFT P µ mu
177 B1 CTRL SHIFT Q π pi
178 B2 CTRL SHIFT R φ phi
179 B3 CTRL SHIFT S ¡
180 B4 CTRL SHIFT T ¿
181 B5 CTRL SHIFT U €
182 B6 CTRL SHIFT V §
183 B7 CTRL SHIFT W ¤
184 B8 CTRL SHIFT X «
185 B9 CTRL SHIFT Y »
186 BA CTRL SHIFT Z º
187 BB CTRL [÷
188 BC CTRL \ ←
189 BD CTRL] →
190 BE CTRL SHIFT 6 ↑
191 BF CTRL SHIFT - ↓

03/05 11

--
Decimal Hex Keying Display/Function

--

192 C0 Left Cursor left one character
193 C1 ALT Left Cursor to start of line
194 C2 CTRL Left / Backspace Delete left one character
195 C3 CTRL ALT Left Delete line
196 C4 SHIFT Left Cursor left one word
197 C5 SHIFT ALT Left Pan left
198 C6 SHIFT CTRL Left Delete left one word
199 C7 SHIFT CTRL ALT Left
200 C8 Right Cursor right one character
201 C9 ALT Right Cursor to end of line
202 CA CTRL Right / Delete Delete character under cursor
203 CB CTRL ALT Right Delete to end of line
204 CC SHIFT Right Cursor right one word
205 CD SHIFT ALT Right Pan right
206 CE SHIFT CTRL Right Delete word under & right of cursor
207 CF SHIFT CTRL ALT Right

208 D0 Up Cursor right
209 D1 ALT Up Scroll up
210 D2 CTRL Up Search backward
211 D3 ALT CTRL Up
212 D4 SHIFT Up / Page Up Top of screen
213 D5 SHIFT ALT Up / Home
214 D6 SHIFT CTRL Up
215 D7 SHIFT CTRL ALT Up
216 D8 Down Cursor down
217 D9 ALT Down Scroll down
218 DA CTRL Down Search forwards
219 DB ALT CTRL Down
220 DC SHIFT Down / Page Down Bottom of screen
221 DD SHIFT ALT Down / End
222 DE SHIFT CTRL Down
223 DF SHIFT CTRL ALT Down

224 E0 CAPS LOCK Toggle CAPS LOCK function
225 E1 ALT CAPS LOCK
226 E2 CTRL CAPS LOCK
227 E3 ALT CTRL CAPS LOCK
228 E4 SHIFT CAPS LOCK
229 E5 SHIFT ALT CAPS LOCK
230 E6 SHIFT CTRL CAPS LOCK
231 E7 SHIFT CTRL ALT CAPS LOCK
232 E8 F1
233 E9 CTRL F1
234 EA SHIFT F1 / F6
235 EB CTRL SHIFT F1
236 EC F2
237 ED CTRL F2
238 EE SHIFT F2 /F7
239 EF CTRL SHIFT F2

12 03/05

--
Decimal Hex Keying Display/Function

--

240 F0 F3
241 F1 CTRL F3
242 F2 SHIFT F3 / F8
243 F3 CTRL SHIFT F3
244 F4 F4
245 F5 CTRL F4
246 F6 SHIFT F4 / F9
247 F7 CTRL SHIFT F4
248 F8 F5
249 F9 CTRL F5
250 FA SHIFT F5 / F10
251 FB CTRL SHIFT F5
252 FC SHIFT space / Insert "Special" space
253 FD SHIFT TAB Back tab (CTRL ignored)
254 FE SHIFT ENTER "Special" newline (CTRL ignored)
255 FF See below

--

Codes up to 20 hex are either control characters or non-printing characters. Alternative keyings
are shown in brackets after the main keying.

Note that CTRL-C is trapped by SMSQ and cannot be detected without changes to the system
variables.

Note that codes C0-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPS LOCK
generates the code FF, followed by a byte indicating what the keycode would have been if ALT
had not been depressed.

Note that CAPS LOCK and CTRL-F5 are trapped by SMSQ and cannot be detected without
special software.

03/05 13

clock
SMSQ/E contains a real time clock, which runs when QPC is started. It obtains the current date
and time from the Windows operating system on the PC. The SMSQ/E clock is then updated
once per minute. So that the SMSQ/E clock, should never be more than one minute different
from the Windows clock.

The format used for the date and time is standard ISO format.

2001 JAN 01 12:09:10

Individual year, month, day and time can all be obtained by assigning the string returned by
DATE to a string variable and slicing it. The clock will run from 1961 JAN 01 00:00:00

Comment: For a description of the format, see BS5249: Part 1: 1976 and as modified in
Appendix D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

--
Command Function

--
SDATE set the clock
ADATE adjust the clock
DATE return the date as a number
DATE$ return the date as a string
DAY$ return day of the week
ALARM set an alarm

--

14 03/05

coercion
If necessary SBASIC will convert the type of unsuitable data to a type which will allow the
specified operation to proceed.

The operators used determine the conversion required. For example, if an operation requires a
string parameter and a numeric parameter is supplied then SBASIC will first convert the
parameter to type string. It is not always possible to convert data to the required form and if the
data cannot be converted an error is reported.

The type of a function or procedure parameter can also be converted to the correct type. For
example, the SBASIC LOAD command requires a parameter of type name but can accept a
parameter of type string and which will be converted to the correct type by the procedure itself.
Coercion of this form is always dependent on the way the function or procedure was
implemented.

There is a natural ordering of data types in SMSQ/E, see figure below. String is the most
general type since it can represent integer data (almost exactly). The figure below shows the
ordering diagramatically. Data can always be converted moving up the diagram but it is not
always possible moving down.

example: a = b + c (no conversion is necessary before performing the
 addition. Conversion is not necessary before assigning
 the result to a.)

a% = b + c (no conversion is necessary before performing the
 addition but the result is converted to integer before
 assigning.)

a$ = b$ + c$ (b$ and c$ are converted to floating point, if possible,
 before being added together. The result is converted
 to string before assigning.)

LOAD "flp1_data" (the string "flp1_data" is converted to type name by
 the load procedure before it is used.)

comment: Statements can be written in SBASIC which would generate errors in most other
computer languages. In general, it is possible to mix data types in a very flexible
manner:

i. PRINT "1" + 2 + "3"
 ii. LET a$ = 1 + 2 + a$ + "4"

03/05 15

not always string
 possible

 name

 floating point

 integer always possible

colour
QPC can operate in 4 different colour modes. Each executing job or SBASIC job may have it's
own colour mode.

COLOUR_QL
This is an 8 colour mode which can display either a solid colour or a stipple - a mixture of two
colours to some predefined pattern. Colour specification in the COLOUR_QL mode, can be up
to three items: a colour, a contrast colour and a stipple pattern.

When an SBASIC program starts executing, it is set to QL colour definition.

single colour := composite_colour

The single argument specifies the three parts of the colour specification. The main
colour is contained in the bottom three bits of the colour byte. The next three bits
contain the exclusive or (XOR) of the main colour and the contrast colour. The top
two bits indicate the stipple pattern.

stipple
contrast XOR main (mix)
colour

bit 7 6 5 4 3 2 1 0

By specifying only the bottom three bits (i.e. the required colour) no stipple will be
requested and a single solid colour will be used for display.

double colour := background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple
is assumed (stipple 3)

triple colour := background, contrast, stipple

Background and contrast colours and stipple are each defined separately.

colours The codes for standard palette colours:

 bit 24 bit value

code colour pattern composition R G B

0 Black 0 0 0 00 00 00
1 Blue 0 0 1 blue 00 00 FF
2 Red 0 1 0 red FF 00 00
3 Magenta 0 1 1 red + blue FF 00 FF
4 Green 1 0 0 green 00 FF 00
5 Cyan 1 0 1 green + blue 00 FF FF
6 Yellow 1 1 0 green + red FF FF 00
7 White 1 1 1 green + red + blue FF FF FF

Colour Composition and Codes

16 03/05

stipples Stipples mix a background and a contrast colour in a fine stipple pattern. Stipples
can be used in SMSQ/E in the same manner as ordinary solid colours. There
are four stipple patterns:

Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

example: i. PAPER 255 : CLS
ii. PAPER 2,4 : CLS
iii. PAPER 0,2,0 : CLS

This program will display all of the colours and stipple patterns available in the COLOUR_QL
mode.

100 REMark COLOUR_QL colours
110 WINDOW 750,550,25,25
120 COLOUR_QL
130 PAPER 0:INK 7
140 CLS
150 FOR x=0 TO 7
160 FOR y= 0 TO 31
170 PAPER 0:INK 7
180 AT y,15*x : PRINT_USING "#####",32*x+y; : PRINT " "; : STRIP

 32*x+y:PRINT " "
190 NEXT y
200 NEXT x
210 PAUSE

comment: This program requires QPC to be operating in at least an 800x600 pixel screen
mode.

COLOUR_PAL
This is a 256 colour mode, which allows you to display any 256 colours from a palette of 16
Million. Colour specification in the COLOUR_PAL mode, is defined as a number between 0 and
255

example: i. PAPER 63 : CLS Deep purple
ii. PAPER 35 : CLS Pastel Yellow

This table lists all the standard 256 colours available in COLOUR_PAL, along with their 24 Bit
values.

Colour Colour 24 Bit value
Number Name R G B

0 00 Black 00 00 00
1 01 White FF FF FF
2 02 Red FF 00 00
3 03 Green 00 FF 00
4 04 Blue 00 00 FF
5 05 Magenta FF 00 FF
6 06 Yellow FF FF 00
7 07 Cyan 00 FF FF
8 08 Dark slate 24 24 24
9 09 Slate grey 49 49 49
10 0A Dark grey 6D 6D 6D
11 0B Grey 92 92 92
12 0C Light grey B6 B6 B6

Colour Colour 24 Bit value
Number Name R G B

13 0D Ash grey DB DB DB
14 0E Dark red 92 00 00
15 0F Light green B6 FF B6
16 10 Mustard 92 92 00
17 11 Dark green 00 92 00
18 12 Sea blue 00 92 92
19 13 Dark blue 00 00 92
20 14 Purple 92 00 92
21 15 Shocking pink FF 00 92
22 16 Orange FF 92 00
23 17 Lime green 92 FF 00
24 18 Apple green 00 FF 92
25 19 Bright blue 00 92 FF

03/05 17

Colour Colour 24 Bit value
Number Name R G B

26 1A Mauve 92 00 FF
27 1B Peach FF B6 B6
28 1C Light yellow FF FF B6
29 1D Light blue B6 FF FF
30 1E Sky blue B6 B6 FF
31 1F Rose pink FF B6 FF
32 20 Pink FF B6 DB
33 21 Beige FF DB B6
34 22 Pastel pink FF DB DB
35 23 Pastel yellow FF FF DB
36 24 Pastel green DB FF DB
37 25 Pastel cyan DB FF FF
38 26 Pastel blue DB DB FF
39 27 Pastel rose FF DB FF
40 28 Brick B6 6D 6D
41 29 Light khaki B6 B6 6D
42 2A Dull green 6D B6 6D
43 2B Dull cyan 6D B6 B6
44 2C Steel blue 6D 6D B6
45 2D Dull pink B6 6D B6
46 2E Brown 6D 24 24
47 2F Khaki 6D 6D 24
48 30 Dusky green 24 6D 24
49 31 Dusky blue 24 6D 6D
50 32 Midnight blue 24 24 6D
51 33 Plum 6D 24 6D
52 34 Dusky pink B6 49 92
53 35 Buff B6 92 49
54 36 Avocado 92 B6 49
55 37 Dull turquoise 49 B6 92
56 38 Dull blue 49 92 B6
57 39 Faded purple 92 49 B6
58 3A Cerise 92 00 49
59 3B Tan 92 49 00
60 3C Grass green 49 92 00
61 3D Sea green 00 92 49
62 3E Ultramarine 00 49 92
63 3F Deep purple 49 00 92
64 40 00 00 49
65 41 24 00 24
66 42 24 00 6D
67 43 24 00 B6
68 44 24 00 FF
69 45 49 00 00
70 46 49 00 49
71 47 49 00 DB
72 48 6D 00 24
73 49 6D 00 6D
74 4A 6D 00 B6
75 4B 6D 00 FF
76 4C B6 00 24
77 4D B6 00 6D
78 4E B6 00 B6
79 4F B6 00 FF
80 50 DB 00 00
81 51 DB 00 49
82 52 DB 00 92
83 53 DB 00 DB
84 54 FF 00 6D
85 55 00 24 00
86 56 00 24 49
87 57 00 24 92
88 58 00 24 DB
89 59 24 24 B6
90 5A 24 24 FF
91 5B 49 24 00
92 5C 49 24 49
93 5D 49 24 92
94 5E 49 24 DB

Colour Colour 24 Bit value
Number Name R G B

95 5F 6D 24 B6
96 60 6D 24 FF
97 61 92 24 00
98 62 92 24 49
99 63 92 24 92
100 64 92 24 DB
101 65 B6 24 24
102 66 B6 24 6D
103 67 B6 24 B6
104 68 B6 24 FF
105 69 DB 24 00
106 6A DB 24 49
107 6B DB 24 92
108 6C DB 24 DB
109 6D FF 24 24
110 6E FF 24 6D
111 6F FF 24 B6
112 70 FF 24 FF
113 71 00 49 00
114 72 00 49 49
115 73 00 49 DB
116 74 24 49 24
117 75 24 49 6D
118 76 24 49 B6
119 77 24 49 FF
120 78 49 49 00
121 79 49 49 92
122 7A 49 49 DB
123 7B 6D 49 24
124 7C 6D 49 6D
125 7D 6D 49 B6
126 7E 6D 49 FF
127 7F 92 49 49
128 80 92 49 DB
129 81 B6 49 24
130 82 B6 49 6D
131 83 B6 49 FF
132 84 DB 49 00
133 85 DB 49 49
134 86 DB 49 92
135 87 DB 49 DB
136 88 FF 49 24
137 89 FF 49 6D
138 8A FF 49 B6
139 8B FF 49 FF
140 8C 00 6D 00
141 8D 00 6D 49
142 8E 00 6D 92
143 8F 00 6D DB
144 90 24 6D B6
145 91 24 6D FF
146 92 49 6D 00
147 93 49 6D 49
148 94 49 6D 92
149 95 49 6D DB
150 96 6D 6D FF
151 97 92 6D 00
152 98 92 6D 49
153 99 92 6D 92
154 9A 92 6D DB
155 9B B6 6D 24
156 9C B6 6D FF
157 9D DB 6D 00
158 9E DB 6D 49
159 9F DB 6D 92
160 A0 DB 6D DB
161 A1 FF 6D 24
162 A2 FF 6D 6D
163 A3 FF 6D B6

18 03/05

Colour Colour 24 Bit value
Number Name R G B

164 A4 FF 6D FF
165 A5 24 92 24
166 A6 24 92 6D
167 A7 24 92 B6
168 A8 24 92 FF
169 A9 49 92 49
170 AA 49 92 DB
171 AB 6D 92 24
172 AC 6D 92 6D
173 AD 6D 92 B6
174 AE 6D 92 FF
175 AF 92 92 49
176 B0 92 92 DB
177 B1 B6 92 24
178 B2 B6 92 B6
179 B3 B6 92 FF
180 B4 DB 92 00
181 B5 DB 92 49
182 B6 DB 92 92
183 B7 DB 92 DB
184 B8 FF 92 6D
185 B9 FF 92 B6
186 BA FF 92 FF
187 BB 00 B6 00
188 BC 00 B6 49
189 BD 00 B6 92
190 BE 00 B6 DB
191 BF 24 B6 24
192 C0 24 B6 6D
193 C1 24 B6 B6
194 C2 24 B6 FF
195 C3 49 B6 00
196 C4 49 B6 49
197 C5 49 B6 DB
198 C6 6D B6 24
199 C7 6D B6 FF
200 C8 92 B6 00
201 C9 92 B6 92
202 CA 92 B6 DB
203 CB B6 B6 24
204 CC DB B6 00
205 CD DB B6 49
206 CE DB B6 92
207 CF DB B6 DB
208 D0 FF B6 24
209 D1 FF B6 6D

Colour Colour 24 Bit value
Number Name R G B

210 D2 00 DB 00
211 D3 00 DB 49
212 D4 00 DB 92
213 D5 00 DB DB
214 D6 24 DB 24
215 D7 24 DB 6D
216 D8 24 DB B6
217 D9 24 DB FF
218 DA 49 DB 00
219 DB 49 DB 49
220 DC 49 DB 92
221 DD 49 DB DB
222 DE 6D DB 24
223 DF 6D DB 6D
224 E0 6D DB B6
225 E1 6D DB FF
226 E2 92 DB 00
227 E3 92 DB 49
228 E4 92 DB 92
229 E5 92 DB DB
230 E6 B6 DB 24
231 E7 B6 DB 6D
232 E8 B6 DB B6
233 E9 B6 DB FF
234 EA DB DB 49
235 EB DB DB 92
236 EC FF DB 6D
237 ED 00 FF 49
238 EE 24 FF 6D
239 EF 24 FF B6
240 F0 49 FF 00
241 F1 49 FF 49
242 F2 49 FF 92
243 F3 49 FF DB
244 F4 6D FF 24
245 F5 6D FF 6D
246 F6 6D FF B6
247 F7 6D FF FF
248 F8 92 FF 49
249 F9 92 FF 92
250 FA 92 FF DB
251 FB B6 FF 24
252 FC B6 FF 6D
253 FD DB FF 49
254 FE DB FF 92
255 FF FF FF 6D

This program will display all of the colours available in the COLOUR_PAL mode.

100 REMark COLOUR_PAL colours
110 WINDOW 750,550,25,25
120 COLOUR_PAL
130 PAPER 0:INK 1
140 CLS
150 FOR x=0 TO 7
160 FOR y= 0 TO 31
170 PAPER 0:INK 1
180 AT y,15*x : PRINT_USING "#####",32*x+y; : PRINT " "; : STRIP

 (32*x+y):PRINT " "
190 NEXT y
200 NEXT x
210 PAUSE

comment: This program requires QPC to be operating in at least an 800x600 pixel screen
mode.

03/05 19

COLOUR_24
This is a 16 Million (24 Bit) colour mode, allowing you to display any of the available 16 Million
colours.

Colour specification in the COLOUR_24 mode, is defined as a number between 0 and
16,777,215

 Red Green Blue

 bit 23 16 15 8 7 0

The 24 Bit value used in INK, PAPER, STRIP etc is calculated as (Red * 65536) + (Green *
256) + Blue. Where each of the colours Red, Green, and Blue have values between 0 and 255.

example: i. PAPER 219 * 65536 + 219 * 256 + 255 : CLS Pastel Blue
ii. PAPER 14408703 : CLS as above in decimal
ii. PAPER $DBDBFF : CLS as above in hexadecimal

COLOUR_NATIVE
The format accepted by COLOUR_NATIVE depends on the colour mode QPC is currently
running in. It uses the same values as the pixels on the screen.

Palettes
The actual colours used in COLOUR_QL and COLOUR_PAL mode are stored in tables which
may be redefined, allowing you to change the colours that are displayed to any of the available
16 Million (24 Bit) colours.

PALETTE_QL enables you to redefine the 8 colours used in the COLOUR_QL mode, to any of
the 16 Million (24 Bit) colours. The replacement colours must be spacified as 24 Bit true
colours.

PALETTE_QL start, colour [,colour [,colour [,colour [,colour [,colour
[,colour [,colour]]]]]]]

start := first colour in table to change
colour := true colour value

This program will change only the two colours cyan and yellow, into khaki and orange, leaving
the others unchanged.

600 khaki = 109*65536+109*256+36
610 orange = 255*65536+146*256
620 PALETTE_QL 5,khaki,orange : REMark change only 2 colours

Many QL programs define some of the colours displayed as "white minus a colour", on a 4
colour QL display, "white minus red" appears as green on a QL . "white minus red" however is
really cyan, not green. As a result, many QL mode 4 programs take on rainbow hues when
displayed on a QPC screen.

This can be "fixed" by redefining the colours so that colour 2 (Red) is a bright crimson, and
colour 4 (Green) is a bright sea green. This will ensure that using true colours (24 Bit), colour 2
plus colour 4 is equal to colour 7.
We also need to ensure that colour 1 is equal to colour 0, colour 3 is equal to colour 2, colour 5
is equal to colour 4, and colour 6 is equal to colour 7. This is to simulate the QL mode 4 colours.

600 crimson = 255*65536+100 : REMark crimson is red + a bit of blue
610 sea = 255*256+155 : REMark sea green is green + the rest of blue
620 white = crimson + sea
630 PALETTE_QL 0,0,0,crimson,crimson,sea,sea,white,white :

REMark set 8 colours

20 03/05

PALETTE_8 enables you to redefine any or all of the 256 colours used in the COLOUR_PAL
mode to any of the 16 Million (24 Bit) colours. The replacement colours must be specified as a
24 Bit true colour.

PALETTE_8 start, colour * [,colour] *

start := first colour in table to change
colour := true colour value

If new colours are required, they should replace colours towards the top of the table so that the
low colours remain unchanged.

This example will set colours 248 to 255 of PALETTE_8 to black, blue, red, magenta, green,
cyan, yellow, and white

100 black = 0 : red = 255 * 65536 : green = 255 * 256 : blue = 255
110 magenta = red + blue : cyan = blue + green : yellow = green + red
120 white = red + green + blue
130 PALETTE_8 248, black, blue, red, magenta, green, cyan, yellow, white

warning: Once a palette has been changed it can only be reset manually or by resetting
SMSQ/E.

Command Function

COLOUR_QL set 8 colour mode
COLOUR_PAL set 256 colour mode
COLOUR_24 set 16 Million (24 Bit) mode
PALETTE_QL change 8 colour palette
PALETTE_8 change 256 colour palette

03/05 21

window manager colour palettes
The Windows Manager maintains a set of standard colour schemes that can be used to provide
a consistent appearance of Windows on the screen.

The commands WM_PAPER, WM_STRIP, WM_INK, WM_BORDER, and WM_BLOCK
perform much the same functions as PAPER, STRIP, INK, BORDER, and BLOCK. But use one
of the seven Window Manager colour schemes, defined as a 16 Bit word (a number in the range
0 to 65535).

Simple colour palette scheme
This colour scheme corresponds to the COLOUR_QL colour mode. The first byte of the colour
word has a value of zero, and the second byte, a value in the range 0 to 255 to represent the
solid, or stipple colour required.

example: i. WM_PAPER $0002 : CLS {red}
ii. WM_PAPER $009F : CLS {green and white vertical stripes}

The colour palette scheme
This colour scheme corresponds to the COLOUR_PAL colour mode. The first byte of the colour
word has a value of one, and the second byte, a value in the range 0 to 255 to represent the
colour required.

example: i. WM_PAPER $0112 : CLS {sea blue}
ii. WM_PAPER $013A : CLS {cerise}

The system palette schemes
This colour scheme corresponds to the colour modes used in Pointer Environment programs.
The first byte of the colour word has a value of two, and the second byte, a value in the range 0
to the value of SP_GETCOUNT minus 1, to represent the colour required.

The system palette colour scheme is further divided into four sub colour schemes, which are
selected by using the SP_JOBPAL command. They default to the following colour schemes but
can be changed at runtime:

0 White paper, with black ink. With a green and white striped title bar.
1 Black paper, with white ink. With a red and black striped title bar.
2 White paper, with black ink. With a red and white striped title bar.
3 Black paper, with white ink. With a green and black striped title bar.

Each element of a Pointer Environment window has a colour, (or stipple pattern) which is
associated with it as defined in the table below.

To provide consistency in Pointer Environment programs, you should use the appropriate
colours in the table below (although you do not have to).

Number Window element

$0200 Window border
$0201 Window background
$0202 Window foreground
$0203 Window middleground

$0204 Title background
$0205 Title text background
$0206 Title foreground

$0207 Loose item highlight
$0208 Loose item available background

22 03/05

Number Window element

$0209 Loose item available foreground
$020a Loose item selected background
$020b Loose item selected foreground
$020c Loose item unavailable background
$020d Loose item unavailable foreground

$020e Information window border
$020f Information window background
$0210 Information window foreground
$0211 Information window middleground

$0212 Subsidiary information window border
$0213 Subsidiary information window background
$0214 Subsidiary information window foreground
$0215 Subsidiary information window middleground

$0216 Application window border
$0217 Application window background
$0218 Application window foreground
$0219 Application window middleground
$021a Application window item highlight
$021b Application window item available background
$021c Application window item available foreground
$021d Application window item selected background
$021e Application window item selected foreground
$021f Application window item unavailable background
$0220 Application window item unavailable foreground

$0221 Pan/scroll bar
$0222 Pan/scroll bar section
$0223 Pan/scroll bar arrow

$0224 Button highlight
$0225 Button border
$0226 Button background
$0227 Button foreground

$0228 Hint border
$0229 Hint background
$022a Hint foreground
$022b Hint middleground

$022c Error message background
$022d Error message foreground
$022e Error message middleground

$022f Shaded area
$0230 Dark 3D border shade
$0231 Light 3D border shade
$0232 Vertical area fill
$0233 Subtitle background
$0234 Subtitle text background
$0235 Subtitle foreground
$0236 Menu index background
$0237 Menu index foreground
$0238 Separator lines etc.

03/05 23

example: The following program will display a message on the screen, in the title colours of
the System palette scheme number 2. That is black text with a red and white striped
title bar.

10 SP_JOBPAL –1,2 {select system palette scheme 2 for this job}
20 WM_PAPER $0204 : CLS 3 {set title background colour}
30 WM_STRIP $0205 {set title text background colour}
40 WM_INK $0206 {set title text colour}
50 AT 0,10 : PRINT ;” Title bar colours “

Grey scale palette scheme
This colour scheme provides a series of shades of grey. The first byte of the colour word has a
value of three, and the second byte, a value in the range 0 to 255 to represent the shade of grey
required.

example: i. WM_PAPER $0300 : CLS {black}
ii. WM_PAPER $0380 : CLS {mid grey}
ii. WM_PAPER $03FF : CLS {white}

Border colours palette scheme
This colour scheme, provides a combination of border styles and colours. The actual colours
used in this palette scheme, depend on which system palette colour scheme has been selected
by the SP_JOBPAL command. The first byte of the colour word has a value of four, and the
second byte, a value in the range 0 to 15 to represent one of the eight border styles.

Number Border style

$0400 3D Chiselled Border (Button Raised)
$0401 As above with colours swapped
$0402 3D Chiselled Border (Button Depressed)
$0403 As above with colours swapped
$0404 3D Raised Border
$0405 As above with colours swapped
$0406 3D Chiselled Border with shadow on south east side
$0407 3D Chiselled Border with shadow on north west side
$0408 Border on left hand side only
$0409 As above with colours swapped
$040A Border on right hand side only
$040B As above with colours swapped
$040C Border on top side only
$040D As above with colours swapped
$040E Border on bottom side only
$040F As above with colours swapped

example: The following program will display all of the border styles.

100 PAPER 4 : CLS
110 JOB_PAL –1, 0
120 WINDOW 200, 100, 100, 100
130 FOR x = 0 TO 15
140 WM_BORDER 4, $400 + x
150 AT 0, 0 : Print “Border Style “ ; x
160 PAUSE
170 WINDOW 200, 100, 100, 100
180 END FOR x

Some of those borders styles have widths that are not compatible with the traditional QL
borders which can cause compatibility problems with applications not prepared for this.
Therefore so called “compatiblity modes” are available, too. When a compatiblity mode is
selected the border has the same width as a traditional QL border with the additional space

24 03/05

filled differently depending on the mode. There are 3 different compatibility modes available
which can be specified in the upper halve of the low byte, i.e. $04x0.

Number Border style

$040x No compatiblity mode
$041x Additional space is outside of border and left untouched
$042x Additional space is inside of border and filled with the paper colour
$043x Additional space is outside of border and filled with the paper colour

Palette stipples scheme
This colour scheme is produced as a combination of two colours combined in a stipple pattern.
The most significant two bits of the first byte have a binary value of %01. The next two binary
bits contain the stipple type. The next 4 binary bits, and the top two binary bits of the second
byte contain the stipple colour, and the last six binary bits contain the main colour.

The values used for the main and the stipple colours are taken from the first 64 colours of the
COLOUR_PAL, 256 colour mode.

example: The following program will produce a white background with a khaki stipple pattern 0

100 kahaki = $2F
110 white = $01
120 WM_PAPER $4000 + (64 * khaki) + white
130 CLS

15 Bit RGB scheme
This colour scheme provides 32 thousand colour combinations. The first binary bit of the colour
word has a binary value of 1. The next five binary bits represent the red component of the
colour. The next five binary bits represent the green component of the colour, and the last five
binary bits represent the blue component of the colour.

example: The following program will create a Magenta background

100 red = 31 {range 0..31}
110 green = 0
120 blue = 31
130 WM_PAPER $8000 + (1024 * red) + (32 * green) + blue
140 CLS

03/05 25

communications
parallel
QPC can access up to 8 parallel ports (called PAR1, PAR2, etc) for connecting it to equipment
which use parallel output communications.

The PC on which you are running QPC will usually have one parallel port fitted, known as LPT1.
The QPC Configurator can determine which PAR port is connected to which LPT port. (usually
PAR1 = LPT1 and PAR2 = LPT2). A parallel port can also be connected to the spool job of a
printer (by configuring the name of the desired printer), thus enabling the access to USB and
network printers.

The PC parallel port connectors will usually be 25 pin connectors

Translate, determines whether the data sent should be translated into other characters. This is
generally used when sending text to printers, to convert the ASCII codes which are different
between the QPC character set, and the printers characters set. See the TRA command.

Parallel communications on QPC are 'simplex', that is the parallel port is transmit only.

communications
serial RS-232-C
QPC can access up to 8 serial ports (called SER1, SER2, etc) for connecting it to equipment
which use serial communications obeying EIA standard RS-232-C or a compatible standard.

The RS-232-C 'standard' was originally designed to enable computers to send and receive data
via telephone lines using a modem. However, it is now frequently used to connect computers
directly with each other and to various items of peripheral equipment, e.g. printers, modems,
etc.

As the RS-232-C 'standard' manifests itself in many different forms on different pieces of
equipment, it can be an extremely difficult job, even for an expert to connect together for the first
time two pieces of supposedly standard RS-232-C equipment. This section will attempt to cover
most of the basic problems that you may encounter.

The PC on which you are running QPC will usually have one or two serial ports fitted, known as
COM1 and COM2. The QPC Configurator can determine which SER port is connected to which
COM port. (usually SER1 = COM1 and SER2 = COM2)

The PC serial port connectors will be either 9, or 25 pin connectors

9 pin 25 pin Name Function Direction

1 8 DCD Data Carrier Detect In
2 3 RXD Receive Data In
3 2 TXD Transmit Data Out
4 20 DTR Data Terminal Ready Out
5 7 GND Signal Ground -
6 6 DSR Data Set Ready In
7 4 RTS Ready to Send Out
8 5 CTR Clear To Send In
9 22 RI Ring Indicator In

26 03/05

Once the equipment has been connected, the baud rate (the speed of transmission of data)
must be set so that the baud rates for both QPC and the connected equipment are the same.
The serial ports on QPC can be set to operate at:

300
600

1200
2400
4800
9600

 19200
38400
57600

115200 baud

The QPC baud rate for each serial port is set by the BAUD command.

The parity to be used by QPC must also be set to match that expected by the peripheral
equipment. Parity is usually used to detect simple transmission errors and may be set to be
even, odd, mark, space or no parity, i.e. all 8 bits of the byte are used for data.

Flow control determines how QPC and the peripheral device know when to communicate with
each other. Flow control can be either:

Hardware Where a signal line is used by one end of the connection to the other
end, to say, don't talk now I'm busy.

Software Where a signal is sent down the Transmit data line to the receiver, to
say, don't talk now I'm busy (XOFF), or I am now ready to listen (XON).
The receiver can be either the peripheral device, or QPC itself

None There is no flow control. Data will be lost, or corrupted if the receiver is
busy doing other things when data arrives, or cannot process the data it
is receiving fast enough.

Translate, determines whether the data sent should be translated into other characters. This is
generally used when sending text to printers, to convert the ASCII codes which are different
between the QPC character set, and the printers characters set. See the TRA command.

Serial communications on QPC are 'full duplex', that is both receive and transmit can operate
concurrently.

The parity and handshaking are selected when the serial channel is opened.

comment: There is also the serial receive only device (SRX), and serial transmit only device
(STX). They are the same as the SER device, except that one will only transmit data,
and the other will only receive data.

command function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept device for a full specification

03/05 27

cursor sprites
The CURSPRLOAD command may be used to replace the standard red block cursor with a
user-defined replacement. This replacement cursor must be the same size (6 by 10 pixels) as
the standard cursor, but may be any colour or pattern the user requires.

These replacement cursors may only be used in windows that have a standard character size of
6 by 10 pixels (CSIZE 0,0).

A cursor sprite definition comprises of two parts, The sprite header and the sprite data.

The sprite header is defined as follows:

--
Offset Size Description

--
$00 byte sprite mode
$01 byte colour mode/system sprite number
$02 byte dynamic sprite version number
$03 byte sprite control
$04 word X size
$06 word Y size
$08 word X offset
$0A word Y offset
$0C long relative pointer to colour pattern
$10 long relative pointer to mask/alpha channel
$14 long relative pointer to next object
$18 long relative pointer to options
$1C long relative pointer to sprite block

--

This section is just an introduction to creating sprites and further information on the construction
of sprites may be found elsewhere.

The following two example programs will create 256 colour, COLOUR_PAL mode, sprite
definition files that may be used with the CURSPRLOAD command.

28 03/05

The following example program will produce a cursor sprite of a white arrow in a red block.

100 OPEN_OVER#3,flp1_arrow_spr {create a file for our sprite definition}
110 RESTORE
120 REPeat loop
130 IF EOF() THEN EXIT loop
140 READ x:BPUT#3,x {read data and store in file}
150 END REPeat loop
160 CLOSE#3
170 CURSPRLOAD flp1_arrow_spr {load our new cursor sprite}
180 CURSPRON –1 {activate it for this job}
1000 DATA 2 {start of header, GD2 sprite mode}
1010 DATA 31 {8 bit palette mapped colour mode}
1020 DATA 0 {leave version number as 0}
1030 DATA 32 {alpha channel is present}
1040 DATA 0,6 {cursor sprite size is always 6 x 10}
1050 DATA 0,10
1060 DATA 0,3 {cursor sprit offset}
1070 DATA 0,4
1080 DATA 0,0,0,20 {pointer to pattern}
1090 DATA 0,0,0,96 {pointer to alpha channel}
1100 DATA 0,0,0,0 {leave as 0}
1110 DATA 0,0,0,0 {leave as 0}
1120 DATA 0,0,0,0 {leave as 0}
1130 REMark Sprite
1140 DATA 2,2,2,2,2,2,0,0 {pattern data for sprite}
1150 DATA 2,2,2,2,1,2,0,0 {in palette mode 2 is red, & 1 is white}
1160 DATA 2,2,2,2,1,2,0,0 {note the 0’s padding the line out}
1170 DATA 2,2,2,2,1,2,0,0 {to 8 bytes}
1180 DATA 2,2,2,2,1,2,0,0
1190 DATA 2,2,1,2,1,2,0,0
1200 DATA 2,1,2,2,1,2,0,0
1210 DATA 1,1,1,1,1,2,0,0
1220 DATA 2,1,2,2,2,2,0,0
1230 DATA 2,2,1,2,2,2,0,0
1240 REMark alpha channel
1250 DATA 255,255,255,255,255,255 {alpha channel data}
1260 DATA 255,255,255,255,255,255 {note no padding of the line}
1270 DATA 255,255,255,255,255,255
1280 DATA 255,255,255,255,255,255
1290 DATA 255,255,255,255,255,255
1300 DATA 255,255,255,255,255,255
1310 DATA 255,255,255,255,255,255
1320 DATA 255,255,255,255,255,255
1330 DATA 255,255,255,255,255,255
1340 DATA 255,255,255,255,255,255

The alpha channel allows a gradual mix between the background and the sprite pattern. Every
pixel of the sprite is represented by one byte of the alpha channel. 0 means that the pixel of the
sprite is completely transparent, and 255 means that the pixel of the sprite is completely
opaque. Values in between determine the amount of mixing of the background and foreground.

03/05 29

This second example will create a green underscore cursor sprite.

100 OPEN_OVER#3,flp1_under_spr
110 RESTORE
120 REPeat loop
130 IF EOF() THEN EXIT loop
140 READ x:BPUT#3,x
150 END REPeat loop
160 CLOSE#3
170 CURSPRLOAD flp1_under_spr
180 CURSPRON -1
1000 DATA 2 {header information as before}
1010 DATA 31
1020 DATA 0
1030 DATA 32
1040 DATA 0,6
1050 DATA 0,10
1060 DATA 0,3
1070 DATA 0,4
1080 DATA 0,0,0,20
1090 DATA 0,0,0,96
1100 DATA 0,0,0,0
1110 DATA 0,0,0,0
1120 DATA 0,0,0,0
1130 REMark Sprite
1140 DATA 4,4,4,4,4,4,0,0 {pattern data for sprite}
1150 DATA 4,4,4,4,4,4,0,0 {3 is green, & 4 is blue}
1160 DATA 4,4,4,4,4,4,0,0 {the blue could be any colour}
1170 DATA 4,4,4,4,4,4,0,0 {as it is never seen due to the}
1180 DATA 4,4,4,4,4,4,0,0 {alpha channel}
1190 DATA 4,4,4,4,4,4,0,0
1200 DATA 4,4,4,4,4,4,0,0
1210 DATA 4,4,4,4,4,4,0,0
1220 DATA 4,4,4,4,4,4,0,0
1230 DATA 3,3,3,3,3,3,0,0
1240 REMark alpha channel
1250 DATA 0,0,0,0,0,0 {all pixels of the sprite are}
1260 DATA 0,0,0,0,0,0 {transparent except the last line}
1270 DATA 0,0,0,0,0,0
1280 DATA 0,0,0,0,0,0
1290 DATA 0,0,0,0,0,0
1300 DATA 0,0,0,0,0,0
1310 DATA 0,0,0,0,0,0
1320 DATA 0,0,0,0,0,0
1330 DATA 0,0,0,0,0,0
1340 DATA 255,255,255,255,255,255

30 03/05

data types
variables
integer Integers are whole numbers in the range -32768 to +32767. Variables are assumed

to be integer if the variable identifier is suffixed with a percent %. There are no
integer constants in SBASIC, so all constants are stored as floating point numbers.

syntax: identifier%

example: i. counter%
ii. size_limit%
iii. this_is_an_integer_variable%

floating point
Floating point numbers are in the range +/- (10^-615 to 10^615), with 8 significant
digits. Floating point is the default data type in SBASIC. All constants are held in
floating point form and can be entered using exponent notation.

syntax: identifier | constant

example: i. current accumulation
ii. 76.2356
iii. 354E25

string A string is a sequence of characters up to 32766 characters long. Variables are
assumed to be type string if the variable name is suffixed by a $. String data is
represented by enclosing the required characters in either single or double quotation
marks.

syntax: identifier$ | "text"

example: i. string_variables$
ii. "this is string data"
iii. "this is another string"

name Type name has the same form as a standard SBASIC identifier and is used by the
system to name Floppy disk files etc.

syntax: identifier

example: i. flp1_data_file
ii. ser1e

binary Binary values are represented as a sequence of zeros and ones, preceded by a
percentage sign.

syntax: %constant

example: i. %1001
ii. %11001010

hexadecimal
Hexadecimal values are represented by a sequence of the numbers 0 – 9 and the
letters A – F (to represent the values 0 – 15), preceded by a dollar sign.

syntax: $constant

example: i. Ten = $A
ii. one_hundred = $64
iii. PRINT PEEK($28000)

03/05 31

dev
virtual device
DEV is a defaulting device that provides up to 8 default search paths to be used when opening
files. As it was designed to be dumped on top of QDOS it is not very clean, but, equally, it is
reasonably efficient.

Each DEV (DEV1 to DEV8) device is attached to a particular real device or a particular default
directory on a real device.

Files on a DEV device can be OPENed, used and DELETEd in the same way as they can on
the real device. Note that the DEV definitions are global.

Default directories for the DEV device may be set with the DEV_USE command.

The DEV device may be redirected with the DEV_USEN command.

Command Function

DEV_USE attach DEV device to a real directory
DEV_USEN rename DEV device

devices
A device is a piece of equipment on QPC (or the underlying PC) from which data can be
received (input) and to which data can be sent (output).

Since the system makes no assumptions about the ultimate I/O (input/output) device which will
be used, the I/O device can be easily changed and the data diverted between devices. For
example, a program may have to output to a printer at some point during its run. If the printer is
not available then the output can be diverted to a Floppy disk file and stored. The file can then
be printed at a later date. I/O on QPC can be thought of as being written to and read from a
logical file which is in a standard device-independent form.

All device specific operations are performed by individual device drivers specially written for
each device on QPC. The system can automatically find and include drivers for peripheral
devices which are fitted.

When a device is activated a channel is opened and linked to the device. To correctly open a
channel device basic information must sometimes be supplied. This extra information is
appended to the device name.

The file name should conform to the rules for a SBASIC type name though it is also possible to
build up the file name (device name) as a SBASIC string expression.

In summary the general form of a file name is:

identifier [information]

where the complete file name (including the extra information) conforms to the rules for a
SBASIC identifier.

Each logical device on the system requires its own particular 'extra information' although default
parameters will be assumed in each case where possible.

define device := name

where the form of the device name is outlined below.

32 03/05

example for console device

Select Console Device
Underscore
Window Width
Separator
Height
Separator - read as AT
Window X co-ordinate
Separator
Window Y co-ordinate
Separator
length of keyboard type ahead buffer

 con_wXhaxXy_k

CON_wXhaxXy_k Console I/O
| wXh | - window, width, height
| AxXy | - window X,Y co-ordinate of upper left-hand corner
| k | - keyboard type ahead buffer length (bytes)

default: con_448x180a32x16_128

example: OPEN #4,con_20x50a0x0_32
OPEN #8,con_20x50
OPEN #7,con_20x50a10x10

SCR_wXhaxXy Screen Output
[wXh] - window, width, height
[AxXy] - window X, Y co-ordinate

default: scr_448x180a32x16

example: OPEN #4, scr_0x10a20x50
OPEN #5, scr_10x10

SERnpftce Serial (RS-232-C) Receive and Transmit
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: ser1htr (8 bit no parity with handshake, translate)

example: OPEN #3, ser1e
OPEN #4, serxdc
COPY flp1_test_file TO ser1c

03/05 33

SRXnpftce Serial (RS-232-C) Receive only
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: srx1htr (8 bit no parity with handshake, translate)

example: OPEN_IN #3, srx1e
OPEN #4, srxxdc
COPY srx1c TO flp1_test_file

STXnpftce Serial (RS-232-C) Transmit only
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: stx1htr (8 bit no parity with handshake, translate)

example: OPEN_NEW #3, stx1e
OPEN #4, stxxdc
COPY flp1_test_file TO stx1c

PARntce Parallel Port (transmit only)
n port number (1, 2, 3 or 4)
[t] translate [c] carriage return [e] end of file
d - direct output r - raw data f - <FF> at end of file
t – translate c - <CR> is end of line z – CTRL Z at end of file

a - <CR><LF> is end of line
 <CR><FF> is end of page

default: par1tr (translate, raw data)

example: OPEN_NEW #3, par1da
OPEN #4, ser
COPY flp1_test_file TO par1

PRT Printer port (either SER or PAR)
default: none

example: OPEN_NEW #3, prt
COPY flp1_test_file TO prt

34 03/05

NULt Nul device, throw away output, provide dummy input
[t] type
p – waits (forever or until the specified timeout) on any input or output operation
f - emulate a null file. Any attempt to read data return an End of File Error as will any

file positioning operation. Reading the file header will return 14 bytes of zero
(no length, no type).

z - emulate a file filled with zeros. The file position can be set to anywhere. Reading
the file header will return 14 bytes of zero (no length, no type).

l - emulate a file filled with null lines. The file appears to be full of the newline
character (10). The file position may be set to anywhere. Reading the file header
will return 14 bytes of zero (no length, no type).

default: nul

example: OPEN #7, nulz
OPEN #4, nuli
COPY ser1 TO nul

PIPE_name_l Two ended Pipe device (first in, first out)
name pipe name
[l] indicates pipe length in bytes (default 1024 bytes)

default: no default

example: OPEN_NEW #7, pipe_alpha
OPEN_NEW #4, pipe_beta_2048
OPEN_IN #5, pipe_beta

HISTORY_name_l Single ended Pipe device (last in, first out)
[name] public history name
[l] indicates pipe length in bytes (default 1024 bytes)

default: no default

example: OPEN #7, history
OPEN #4, history_messages_2048
OPEN #5, history_512

DEVn_name Defaulting file accessing device
n - Dev drive number
name - Dev drive file name

default: no default

example: OPEN #9, dev1_data_file
OPEN #9, dev5_test_program
COPY dev2_test_file TO scr_

FLPn_name Floppy drive File Access
n - Floppy drive number
name - Floppy drive file name

default: no default

example: OPEN #9, flp1_data_file
OPEN #9, flp1_test_program
COPY flp1_test_file TO scr_

03/05 35

RAMn_name RAM (virtual) drive File Access
n - RAM drive number
name - RAM drive file name

default: no default

example: OPEN #9, ram1_data_file
OPEN #9, ram1_test_program
COPY ram1_test_file TO scr_

WINn_name Winchester hard disk drive File Access
n - WIN drive number
name - WIN drive file name

default: no default

example: OPEN #9, win1_data_file
OPEN #9, win1_test_program
COPY win1_test_file TO scr_

Keyword Function

OPEN initialise a device and activate it for use
CLOSE deactivate a device
COPY copy data between devices
COPY_N copy data between devices, but do not

copy a file's header information
EOF test for end of file
WIDTH set width

36 03/05

direct
command
SBASIC makes a distinction between a statement typed in preceded by a line number and a
statement typed in without a line number. Without a line number the statement is a direct
command and is processed immediately by the SBASIC command interpreter. For example,
RUN is typed in on the command line and is processed, the effect being that the program starts
to run. If a statement is typed in with a line number then the syntax of the line is checked and
any detectable syntax errors reported. A correct line is entered into the SBASIC program and
stored. These statements constitute a SBASIC program and will only be executed when the
program is started with the RUN or GOTO command.

Not all SBASIC statements make sense when entered as a direct command, for example, END
FOR, END DEFine, etc

directories
In SMSQ terminology, a 'directory' is where the system expects to find a file. This can be as
simple as the name of a device (e.g. FLP2_ the name of floppy disk drive number 2) or be much
more complex forming part of a 'directory tree'.
For example: the directory FLP2_ could include directories JOHN_ and OLD_ (note: all directory
names end with an '_'), and JOHN_ could include files DATA1 and TEST).

FLP2_

JOHN_ OLD_

DATA1 TEST

This shows another characteristic of the 'directory tree': it grows downwards. The complete
SMSQ filename for DATA1 in this example is FLP2_JOHN_DATA1. (You may have come
across the terms 'pathname' or 'treename': these refer to the same thing as a SMSQ filename.)

One unusual characteristic of the SMSQ directory structure is the absence of a formal file name
'extension'. This is not strictly necessary as 'extensions' (e.g. _aba for ABACUS files, _asm for
assembler source files etc.) are treated as files within a directory.

This can be illustrated with the case of an assembler program TEST, processed using the GST
macro assembler and linkage editor. The assembler source file (TEST_ASM), the listing output
from the assembler (TEST_LIST), the relocatable output from the assembler (TEST_REL), the
linker control file (TEST_LINK), the linker listing output (TEST_MAP) and the executable
program produced by the linker (TEST_BIN) are all treated as files within the directory TEST_.

FLP2_

JOHN_

TEST_

ASM LIST REL LINK MAP BIN

03/05 37

SMSQ/E provides facilities to set default directories. The defaults are available for all filing
system operations. A default may be set to any level of complexity and gives a starting point for
finding a file in the tree structure. Thus, in this example, if the default is FLP2_, then
JOHN_TEST_ASM will find the assembler source. If the default is FLP2_JOHN_, then
TEST_ASM will find it, while the full filename FLP2_JOHN_TEST_ASM will find the file
regardless of the default.

Command Function

DATA_USE set data default used by LOAD, OPEN etc
PROG_USE set program default used by EX/EXEC etc
DEST_USE set destination default used by COPY, RENAME etc

directory
devices
Directory devices handle individual files, organised in directories (with at least one root
directory). The drive RAM is used to access the RAM-disk, FLP is used to access the floppy
disk, and WIN is used to access the hard disk. More details can be found in the hardware-
dependent sections of this manual. SMSQ/E will read and write from and to QL floppy disk (DD
and HD, if your hardware permits).

In addition, SMSQ/E comes with in built drivers to recognise, (PC) DOS floppy disks, and (Atari)
TOS floppy disks (DD and HD).

The SBASIC command DIR has been extended to show density and format of a medium. There
are now new functions, which allow you to fetch this information, see the DMEDIUM_xxx range
of functions.

If you insert a QDOS 720k floppy disk into flp1_ and type:

DIR flp1_

Then you will see the following (or similar) output on the screen:

diskname QDOS DD
720/1440 sectors
...directory ...

If you insert a DOS high-density disk and ask for the directory again, you should see:

DISKNAME MSDOS HD
720/2880 sectors
...directory ...

38 03/05

DOS
device
The DOS device has been created to transfer data between the Windows and the SMSQ/E
environment. Using the device you can directly browse your PC hard disks (or network drives or
CD-ROMs or whatever), read and write files.

Please note that the DOS device is NO replacement for the WIN device (it never was intended
to be), all SMSQ header information gets lost on DOS drives, therefore you cannot store
executable code on them.

You can use this device in the same way as any other QPC directory device to access and
exchange files between Windows and SMSQ/E as easy as never before. The usual restrictions
imposed by the general QDOS file naming convention apply, i.e. the length of the directory +
filename is limited to 36 characters. Names longer than that won’t show up in the directory lists!
Therefore, it is a good idea to place files, which you want to access from both SMSQ/E, and
Windows only one or two directory levels deep or change the base of one DOS drive directly
below the desired directories.

Many filenames that are valid under SMSQ/E are not valid on Windows. The offending
characters (e.g. *, /, ? etc. or filenames with spaces at their end) are translated into other, valid
ANSI characters. This conversion works quite well, but you are advised to use valid filenames
wherever possible.

One problem with the SMSQ/E way of accessing files is that the “_” separator can be a valid
part of a name or a directory separator. Therefore the relation SMSQ/E filename -> Windows
filename is ambiguous. This can cause some problems:

Let’s say you have two directories named C:\QL\STUFF\ and C:\QL\STUFF_NEW\ and you
want to create a file called DOS1_QL_STUFF_NEW_BRANDNEW.TXT. Where does that file
belong? It could mean any of the following choices:

C:\QL_STUFF_NEW_BRANDNEW.TXT
C:\QL\STUFF_NEW_BRANDNEW.TXT
C:\QL\STUFF\NEW_BRANDNEW.TXT
C:\QL\STUFF_NEW\BRANDNEW.TXT

Probably the last one is the one you intended it to be, but how should QPC now? The easy
solution is not to use underscores in directory names. But if you can’t help it, it gets essential to
know how the DOS device works.

Since v3.02 there is a new algorithm which is based on the simple assumption that if you have a
directory called “QL_STUFF” you won’t also create “QL\STUFF”.

The basic principle is that the algorithm always searches for the longest consecutive parts of the
name. In the above example QPC would begin with searching for any directory starting with
“C:\QL”. If there is none the process is complete and the result is simply
“C:\QL_STUFF_NEW_BRANDNEW.TXT”. Otherwise it will look for any directory starting with
“C:\QL_STUFF” next. Again, if there is one, QPC will try “C:\QL_STUFF_NEW” and so on.
If not found, however, it will test whether the last successful part (“C:\QL_STUFF”) is itself a
directory. If it is, it is considered as a part of the filename and all future searches use it as their
base (i.e. next step being “C:\QL_STUFF\NEW”). If not the search terminates with the result
again being “C:\QL_STUFF_NEW_BRANDNEW.TXT”.

If this sound too confusing or too badly explained (probably both) just remember one thing:
never use “_” within directory names.

Finally please note that you cannot use RENAME to rename files on a DOS drive. SMSQ/E
allows you to rename files from one directory to another one, which is not compatible with the
DOS way of renaming files. If you want to rename a file, you need to COPY it to a new location
and DELETE the old file.

03/05 39

DOS disks
You can load files from (PC) DOS disks as if they were QPC disks. You can save files to DOS
disks, but you have to make sure that the filename does match the DOS naming convention, i.e.
up to eight characters, full stop, up to three characters for the extension.

All the filling system calls will work on DOS disks, you can create subdirectories, delete files.
You cannot, however, use the FORMAT command to format a floppy disk to DOS format. It will
always be the preferred (QDOS) format.

The DOS filling system does not have the concept of different file types. Different file types are
distinguished by their filename extension. Therefore, QDOS "executable" programs (file type 1)
cannot be handled the way they are handled on a QDOS disk. From SMSQ/E version 2.87 on,
you can copy executable files onto DOS disks, which can later be executed from this disk. They
will get a special extension '.EXn' where n is the number which specifies the dataspace (which
is usually held invisible to the user in the file header): it is 512*2^n. This extension will be
invisible in SMSQ/E, but will be seen in DOS. Example (assuming flp1_ contains a DOS disk):

COPY win1_CLOCK TO flp1_CLOCK

Will create a file flp1_CLOCK.EX1 on the DOS disk. You can still refer to it as flp1_CLOCK, it
will be shown in the directory as flp1_CLOCK only, but if you look at this disk on a DOS
computer, then you will see the real name. Extensions of executable files will be removed
automatically, e.g.

COPY win1_PROGRAM_bin TO flp1_PROGRAM.bin

Will not create a file flp1_PROGRAM.bin, it will create a file flp1_PROGRAM.EX3, but you
have to refer to it as flp1_PROGRAM only, e.g.

EX flp1_PROGRAM

As the filename extension is lost anyway even if you copy the file back, we suggest that you do
not specify an extension. This will also make sure that you do not end up with files having the
same filename.

40 03/05

error
handling
Errors are reported by SBASIC in a standard form:

 At line line_number : statement_number error_text

Where the line number is the number of the line where the error was detected, statement
number is the number of the statement in the line, and the error text is listed below.

(1) incomplete
An operation has been prematurely terminated (or break has been pressed).

(2) invalid job ID
An error return from SMSQ/E relating to system calls controlling multitasking
or I/O.

(3) insufficient memory
SMSQ/E and/or SBASIC has insufficient free memory.

(4) value out of range
Usually results from attempts to write outside a window or an incorrect array
index.

(5) buffer full
An I/O operation to fetch a buffer full of characters filled the buffer before a
record terminator was found.

(6) invalid channel ID
Attempt to read, write or close a channel which has not been opened.
Can also occur if an attempt to open a channel fails.

(7) not found
File system, device, medium or file cannot be found.
SBASIC cannot find an identifier. This can result from incorrectly nested
structures.

(8) already exists
The file system has found an already existing file with the same name as a new
file to be opened for writing.

(9) is in use
The file system has found that a file or device is already exclusively used.

(10) end of file
End of file detected during input.

(11) medium is full
A device has been filled (usually Floppy disk).

(12) invalid name
The file system has recognised the name but there is a syntax or parameter
value error.
In SBASIC it means a name has been used out of context. For
example, a variable has been used as a procedure.

(13) transmission error
RS-232-C parity error

(14) format failed
Attempted format operation has failed, the medium is possibly faulty (usually a
Floppy disk).

03/05 41

(15) invalid parameter
There is an error in the parameter list of a system or SBASIC procedure or
function call.
An attempt was made to read data from a write only device.

(16) check failed
The medium (usually a Floppy disk) is possibly faulty

(17) error in expression
An error was detected while evaluating an expression.

(18) arithmetic overflow
Arithmetic overflow division by zero, square root of a negative number, etc.

(19) not Implemented

(20) write protected
There has been an attempt to write data to a shared file.

(21) invalid syntax
A SBASIC syntax error has occurred.

(22) PROC/FN cleared
This is a message which is for information only and is not reporting an error. It
is reporting that the program has been stopped and subsequently changed
forcing SBASIC to reset its internal state to the outer program level and so
losing any procedure environment which may have been in effect.

(23) access denied

error reporting
The line number where an error occurred, is returned by ERLIN. And the error number by
ERNUM.

REPORT will report the description of the last error encountered.

ERT can be used with functions which return an error code, in order to allow the program to
stop, or continue.

error recovery
After an error has occurred the program can be restarted at the next statement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program can be
restarted at the statement, which triggered the error. Type

RETRY

error handling
Error handling is invoked by a WHEN ERROR clause. When an error is encountered,
processing is passed to the commands in the WHEN ERROR clause. Within the WHEN
ERROR clause the type of error can be tested for, and appropriate actions can be taken.

42 03/05

expressions
SBASIC expressions can be string, numeric, logical or a mixture: unsuitable data types are
automatically converted to a suitable form by the system wherever this is possible.

define
monop := | +

| -
| NOT

expression := | [monop] expression operator expression
| (expression)
| atom

atom := | variable
| constant
| function [(expression *|, expression *)]
| array_element

variable := | identifier
 | identifier%
 | identifier$

function := | identifier
 | identifier%
 | identifier$

constant := | digit * [digit] *
 | *[digit] *, *[digit]*
 | *[digit] * [.] *[digit]* E *[digit]*

The final value returned by the evaluation of the expression can be integer giving an
integer_expression, string giving a string_expression or floating point giving a floating
expression. Often floating point and integer expressions are equivalent and the term
numeric_expression is then used.

Logical operators can be included in an expression. If the specified operation is true then a one
is returned as the value of the operation. If the operation is false then a zero is returned. Though
logical operators can be used in any expression they are usually used in the expression part of
an IF statement.

example: i. test_data + 23.3 + 5
ii. "abcdefghijklmnopqrstuvwxyz"(2 TO 4)
iii. 32.1 * (colour = 1)
iv. count = -limit

03/05 43

Extended Environment

The Parts of the Extended Environment
The Extended Environment comes as four loosely connected parts. The Pointer Interface, the
Thing System, the Window Manager, and the HOTKEY System 2.

The Pointer Interface is an extended version of the QDOS CONsole driver which accepts user
input from a "pointing device", usually a "mouse" as well as from the keyboard. The user's input
is directed to the program that he wishes to use by pointing to that program with a "pointer" (an
arrow or other pointing symbol which appears on the screen). The Pointer Interface also keeps
the display tidy when there is more than one Job trying to write to the display.

Programs do not have to be written specially for the Pointer Interface; all the window save and
restore operations are done automatically.

The Window Manager is a set of utility routines that provides menu handling facilities to
programs which have been written specially for the Extended Environment. These facilities
create a user interface, which is reasonably uniform and consistent from program to program,
even where these programs come from completely different suppliers.

The HOTKEY System 2, in contrast, is entirely under the user's control. A Hotkey can be used
to Execute a program, to pick a one of the Jobs executing so that you can work with it, to stuff
pre-defined strings into the keyboard queue, to recall the last line typed or to transfer strings
from one program to another.

The standard system incorporates SBASIC functions to add and remove Hotkeys, but, as all the
operations required to control the HOTKEY System 2 are built into the Hotkey Thing (Thing!! of
all the parts of the Extended Environment, Things are the simplest and most confusing to the
uninitiated), there is no problem in providing the same control through other programs. QPAC 2,
for example, provides some facilities for users to access the HOTKEY System 2.

The Thing System is something, which most users do not need to bother themselves with. The
Thing System exists to make it much easier for software developers to write programs which
communicate cleanly with programs from other suppliers. There is no direct user control over
the Thing System, but for those who might be interested, here is some background information.

SMSQ/E allows Jobs to communicate directly with each other without the need to pass the
information through "pipes". They can do this by sharing some area of the computer's memory.
To maintain the self-cleaning aspects of the SMSQ operating system, the shared memory and
the communicating Jobs will normally need to be owned by the same Job. If this owner Job, is
removed, the communicating Jobs will be removed as well as the shared memory. Thus the
system is kept clean.

The Thing System is a means of defining and controlling areas of shared memory. A Thing can
be used to transfer data between Jobs, which are completely independent, and these Jobs do
not need to be executing at the same time. A Thing can be permanent until removed, or it can
be owned by a Job. When a Job owning a Thing is removed from the computer, then the Thing
is also removed by SMSQ/E at the same time. If there are any Jobs using a Thing, which is
removed from the computer, then the Jobs will be removed.

They are called Things because they can be almost anything. The Window Manager should be
a Thing, but it was written before Things were implemented. HOTKEY System 2 is a Thing. The
programs, which form QPAC 2 are Executable Things. Things can be used to control access to
sound synthesizers, to control the layout of the display (e.g. the Button Frame of QPAC 2), to
provide functions which can be accessed from any programming language (e.g.
FILE_SELECT$ from Jochen Merz's MENU extensions) or almost anything else.

44 03/05

The Pointer Interface
The main purpose of the Pointer Interface is to allow the user to organise the display in such a
way as to make it easier to see and control a large number of Jobs running in the computer at
any time.

The Pointer Interface is an extended QDOS CONsole driver, which accepts user input from a
"pointing device", usually a "mouse", as well as from the keyboard. And the user's input is
directed to the Job that he wishes to use by pointing to that Job's windows with a "pointer" (an
arrow or other pointing symbol, which appears on the screen).

This would not be very useful if there were many Jobs with windows which overlapped in the
usual confused way, as it would be impossible to tell which of these Jobs was the intended
recipient of the user's instructions. To avoid this problem, the Pointer Interface ensures that,
when you have two or more Jobs with overlapping windows, the windows belonging to one of
these Jobs will appear to be on top of the other Jobs' windows. It is the top Job that will get the
user's keystrokes and mouse button presses.

If the top Job will not accept Pointer input, but is waiting for the user to type on the keyboard.
Then the pointing symbol will change to a letter K. If, for any reason, the top Job will not accept
any entry from the keyboard or mouse, the pointing symbol will change to a "No Entry" sign.

The Cursor Keys and the Mouse
The cursor keys can usually be used to move the pointer around the display in place of using
the mouse. You may find that it is easier to work with some programs if this facility is
suppressed. There are two commands, which can be used to turn the cursor key control off and
on again.

CKEYOFF Turn cursor key control off
CKEYON and back on again.

The mouse can also be used to generate cursor key strokes, for programs which accept cursor
key input, by pressing the left hand button and moving the mouse while holding it down.

Locked Windows
To keep the screen tidy, if a Job's windows are partly or completely covered by another Job's
windows, then the lower Job's windows are "locked". If a Job tries to write to a locked window,
or to read keystrokes through a locked window, then it will be suspended by SMSQ/E (not by
the Pointer Interface). If the pointer is over a locked window, the pointing symbol changes to a
picture of a padlock. The padlock will also appear if the display is frozen (e.g. by pressing CTRL
F5).

Picking
There are various ways in which a Job can be "Picked", either to unlock its windows so that the
Job can write to them, or to direct the keyboard queue to that Job.

If part of a Job is visible, then you can point to the Job and Pick it by pressing the left hand
mouse button or space bar. You can also use the right hand button or ENTER key, but this also
generates a "Wake Event" (see under "Events").

It is possible to bring the Job at the bottom of the pile of windows to the top by pressing CTRL
and C (the standard SMSQ/E keyboard switching keystroke).

Finally, a specific Job can be Picked to the top by any Job written to use the Pointer Interface
extended operating system entry point IOP.PICK. In particular, Jobs can be Picked using the
Pick program in QPAC 2 or using a Hotkey through the HOTKEY SYSTEM 2.

03/05 45

Unlockable Windows
It is possible to define a Job's windows to be "unlockable". These windows are kept outside the
control of the Pointer Interface and thus are every bit as badly behaved as the standard QDOS
CONsole driver windows. This means that, for example, it is possible to create a clock program
which writes the time and date into a spare hole in the Quill display. Unfortunately, it is unlikely
that other programs will have a spare hole in exactly the same place and such a clock program
is of limited use as it will make rather a mess of any other programs which are used at the same
time as Quill.

The HOTKEY System 2 includes facilities for executing programs with unlockable windows.

There is a clean solution to this problem. If you wish to have two Jobs writing to the same set of
windows, so that both Jobs are locked and unlocked together, the window used by the clock (or
other similar program) should be owned by the other Job. This is the solution used by the
Calendar program in QPAC 1. If you are writing a program in SBASIC, and you wish to have a
clock linked to the program, then you can do this by opening a window where you wish the
clock to be, and executing the clock in that window.

Primary and Guardian Windows
It is common for Jobs to have more than one window open at a time. To keep things simple, the
Pointer Interface defines a "Primary Window" area. The Primary Window area of each Job is
used to determine which Jobs overlap on the display.

For true Pointer Environment Jobs, the Primary Window is defined by a special operating
system call, and, although the Primary Window can be moved or re-sized, other windows owned
by the Job must be within the Primary Window area. For other programs it is just the smallest
rectangular area which encloses all of the Job's windows. If these windows change in size or
position, then the primary window may change as well. In turn, this may cause parts of other
Job's windows to be restored or even unlocked. This may be desirable (e.g. where a modest
Job is being moved around the display) or it can have some unpleasant effects.

To prevent a Job's Primary Window changing size, it is possible to define a "Guardian Window"
which is opened for the Job, before the Job itself starts executing. The HOTKEY System 2 can
be used to execute programs with Guardian Windows. A Guardian Window will be the Primary
Window for the Job, and must be defined to cover the whole of the area of the display that will
be used by the Job. In most cases this Guardian Window will cover the whole of the Display.

Restoring Windows
When a Primary Window is locked because another Primary Window is opened, expanded or
moved on top of it, the whole Primary Window area is saved.

When part or all of a Job's Primary Window becomes visible as a result of other Primary
Windows being moved, Primary Windows being closed or the Job itself being Picked, the
Pointer Interface will restore those parts of the Primary window that have become visible. Unlike
most window environments, where it is the responsibility of each Job to maintain its own
windows, this is done by the Pointer Interface without any co-operation from the Job. This
method, therefore, works as well with Jobs that are written in ignorance of the Pointer Interface
as it does with Jobs that are written to take advantage of it

Events
To improve the efficiency of the system, the Pointer Interface provides a "Event Vector" for
programs using the Pointer. These programs do not need to keep on checking the position of
the Pointer or the state of the mouse buttons. Instead, these programs will suspend themselves
until an Event occurs, such as the Pointer moving into the window or a key or mouse button
being pressed. It is up to each program to interpret these Events. The Window Manager
provides a uniform response to these Events.

46 03/05

The Pointer Interface and Badly Behaved Software
In principle, any well written software can be "multitasked" under SMSQ/E without any additional
software and without any real problems. All you need to do is to EXEC the programs you wish to
use (EXECing new programs and quitting the ones already executing whenever you wish).
When you wish to direct the keyboard input to another Job, just press CTRL and C until you get
to it. The screen can get a little untidy, but using the Pointer Interface can cure that.

In practice, there are several problems, one of which can occur in both well written and badly
written software.

The SMSQ/E CONsole driver assumes that all Jobs requiring input from the user will have an
active keyboard cursor. This is not necessarily so in keyboard based graphics programs which
bypass the CONsole driver and read the keyboard directly. (This enables them to detect cursor
key presses at the same time as other keystrokes, a facility not available through the CONsole
driver.) As these direct keyboard reads bypass the CONsole driver, it is not possible to stop
such Jobs reacting to keystrokes intended for other Jobs. It is possible to give this type of job a
Guardian Window with a "Freeze" option. When the Job is buried by another Job, the program
is suspended, thus preventing it from stealing the input intended for another program.

There is a similar, but less serious, problem with menu based programs which read the
keystrokes through a CONsole which does not have a cursor. Although the Psion programs
have a visible cursor, they use the trick of reading though a special CONsole which does not
have a cursor. Thus, without the Pointer Interface you cannot use CTRL C to switch the
keyboard input to one of these menu based programs or one of the Psion programs. With the
Pointer Interface you can use CTRL C to switch the keyboard input to any Job which reads the
keyboard through the CONsole driver.

So much for the type of problems for which there is sometimes some justification, now we come
to the nasty bits.

In addition to their suppression of CTRL C, the Psion programs have a number of other nasty
tricks to play on unsuspecting users. The first has nothing to do with the display: when Quill, or
one of the other Psion programs starts executing, it grabs most of the available memory. It may
not need all this memory, but doing this ensures that there is not enough memory left for any
other program to be executed. It also means that there is not enough memory for a window
save area to be allocated by the Pointer Interface. The HOTKEY System 2 includes facilities to
execute the Psion programs in such a way that the amount of memory they use is limited.

The next nasty trick is that the Psion programs make a large number of unnecessary operating
system calls to set the display MODE. The Pointer Interface can survive this, but it can be rather
annoying for the user.

Their worst trick is writing directly to the display. In the case of the Psion programs, this trick
performs no useful function and the harmful side effects can be minimised by the use of a
Guardian window. There are programs which are much worse, but even so, some of these will
work if they are executed within a Guardian window with the Freeze option which will stop them
writing to the display (or doing anything else!) while they are buried.

There are two types of program which are sure to give problems. The first is the type of program
which is so badly behaved that it is unable to share the machine with another copy of itself. The
second is the type of program which pokes values directly into the operating system data
structures.

03/05 47

The Window Manager
The Window Manager provides a set of utility routines, which simplify the handling of menus
and pull-down windows. There is no reason why any particular program should use the window
manager, but using it provides a reasonably uniform user interface to applications programs.
The following description applies to standard menu windows. Other types of windows should be
similar, but there may be some subtle differences.

A window set up by the window manager has a number of different parts. The first is general
information: this could be lines or borders dividing the window to improve the clarity, or
explanatory text or icons. Then there are the "loose menu items": so called because they are
not tied down to any fixed organisation and can be put anywhere in the window. Finally, there
are the "sub-windows" (These are called "application sub-windows" within the Window Manager
to distinguish them from the "information sub-windows" which just contain the general
information). Simple pull-down menus may not have any sub-windows, whereas in menus that
include lists of items to select (e.g. lists of files) the sub-window may well be the most important
part.

Selecting Menu Items
A menu comprises a number of "items". Items can be selected by pointing to the item using the
cursor keys or mouse, and then pressing the space bar, ENTER or one of the mouse buttons.
The space bar is equivalent to the left button: pressing this is termed a "HIT". The ENTER key is
equivalent to the right button: pressing this is called a "DO".

Items have one of three states: "unavailable", "available" or "selected". Most items will be
available, selected items are shown using a highlight colour combination, while unavailable
items are shown in a reduced visibility colour combination.

When you point to an item, a border will appear around it: this indicates that it is the "current
item". This is the item which will be HIT or DONE. If the item is unavailable, then there will be no
effect. If the item is available, then the item will be set to the selected state, and the action
associated with the item will be carried out. If the item is selected, then a HIT will make the item
available again, while a DO will keep the item selected and then carry out the associated action.

The distinction between a HIT and a DO depends on the operation. Very often a HIT will merely
change the state of the item, while a DO will do the action. For other items HIT and DO are
similar but DO is more forceful. For some items there is no distinction between them.

You can select several items in a sub-window menu by holding the mouse button down and
moving (slowly) through the menu. As the pointer moves into each item, it will be selected.

Single Keystroke Selection
It is also possible to select items using a single keystroke. This key will often be the first letter of
the item name (if it has a name), it may be shown in the menu as a symbol close to the item, or
you may need to memorise it from the manual.

The effect of single keystroke selection also depends on the operation. For an item within a sub-
window, it may just move the pointer to the item, making it the current item, or it may move it to
the item and HIT or DO it. For Loose menu items, it will HIT or DO the item without moving the
pointer: this stops the pointer being moved out of the current sub-window.

Current sub-window? Yes, the Window Manager allows there to be several sub-windows in one
window. Usually, items in a sub-window can only be selected by single keystroke if the pointer is
in that sub-window. So that keystroke selection of sub-window menu items can be used from
anywhere in the window, each sub-window has a selection keystroke. To move the pointer into
the sub-window, press the sub-window selection keystroke: you can then select items within the
sub-window by single keystroke.

48 03/05

Pan and Scroll
Items in a menu sub-window are arranged in rows and columns. There may be more items in a
menu sub-window than can be displayed in the available space. If this happens, the window will
be marked as pannable (you can move the contents sideways), or scrollable (you can move the
contents up and down). The window can be both pannable and scrollable, but this is usually
very inconvenient.

A window is marked as pannable or scrollable by including rows of arrows within the window, or
by putting a pan or scroll bar to the right of or below the window. The pan or scroll bar includes
a block which indicates the (size and) position of the visible section of the menu within the
complete menu. If the block in a scroll bar starts halfway down the scroll bar, then the first
visible row in the menu is about half way down the list or rows in the complete menu.

To pan or scroll by one column or row, you can press ALT and a cursor key. HITting an arrow
row will have the same effect. To pan or scroll by the width (less one column) or height (less
one row) of the window, you can press ALT, SHIFT and a cursor key. DOing an arrow row will
have the same effect.

To pan or scroll directly to a position in the menu, move the pointer to the pan or scroll bar and
HIT the bar at the position required. If you keep your finger on the left button or the space bar,
you can "drag" through the menu using the mouse or cursor keys. To make this simpler for
keyboard users, the sub-window selection keystroke will also move the pointer from inside the
sub-window to the pan or scroll bar.

Split and Join
Some menu sub-windows can be split into two or more sections. Each section can then be
panned or scrolled independently. To split a window, point to the pan or scroll bar where you
wish to split to be made and DO it. The window may be re-joined by DOing on the split.

Standard Loose Items
There are a number of standard loose menu items and keystrokes. The most common are the
F1 (Help), F3 (Command) and ESC (Escape - leave the menu). As these are the most common,
they also tend to be the most variable. Help may be available using F1, even if there is no Help
item visible. F3 or the command item will usually give access to a further (pull-down) menu.
ESC can mean leave the menu, leave the menu without saving any changes made or leave the
program altogether. If in doubt, try it.

There is a set of window control items which are all selected by CTRL and a function key (F1 to
F4). These keystrokes are denoted CF1, CF2, CF3 and CF4. The operations will only be
available if the appropriate item is available.

CF4 Move
CF3 Resize
CF2 Sleep
CF1 Wake

To move the window, HIT or DO the Move item or press CTRL and F4. The window can then be
moved using the mouse or cursor keys. The pointing symbol changes to the Move symbol, and
it may happen that the only thing that moves while you are positioning the window is this
symbol. When you have moved far enough, HIT or DO will complete the operation.

Resize is similar to move: HIT or DO the Resize item, or press CTRL and F3, and you can then
change the window size.

The purpose of the Sleep item is to tuck the Job away to bed to free some of the display. This is
especially useful for Jobs with large windows. The Job will shrink its window to a small "button",
and wait until it is woken up.

03/05 49

The Wake item is used to create a "wake event" to the Job. If the item is a button, the wake
event will make it re-create its windows. If the windows are already set up, the wake event will
make the Job refresh the menus. This is useful for Jobs, which display information about the
system. The Files menu of QPAC 2, for example, will re-read the directory of the appropriate
disk when it receives a wake event.

A wake event is also created when a Job is picked by a DO rather than a HIT, and it is possible
to send a Job a wake event using the HOTKEY System 2.

The HOTKEY System 2
The HOTKEY System 2 provides Hotkey facilities. A Hotkey is a key, which is pressed to cause
an action, which is independent of the program with which you are working at the time. For
example, if you have a Hotkey, which pops up a telephone directory, then it does not matter
whether you are in the middle of using a word processor, or doing your accounts, you press the
Hotkey and up pops the directory. The keystroke is stolen by the HOTKEY System 2, and so the
program you are working with, remains blissfully unaware that anything has happened.

Using HOTKEY System 2, the ALT key is used to indicate that a keystroke may be a Hotkey.
This operates in the same way as the CTRL and SHIFT keys and may be used in combination
with either (or both) to define up to 128 Hotkeys.

Hotkey Operations
There are many different operations which may be carried out using Hotkeys. To make it even
more flexible, there is one operation that allows any code to be added to HOTKEY System 2. In
this manual, however, we will describe only those operations which can be set up using the
SBASIC extensions which are incorporated into HOTKEY System 2.

Three Hotkeys are set up with the HOTKEY System 2. These are intended to save you time and
effort by doing some typing for you.

ALT ENTER recalls the last line you typed into the current keyboard queue
(and the line before that, and so on).

ALT SPACE copies the current " Stuffer Buffer" into the current keyboard
queue.

ALT SHIFT SPACE copies the previous " Stuffer Buffer" into the current keyboard
queue.

(The file name is put into the Stuffer Buffer by QPAC 2 when a file is Viewed or by QD when a
file is saved. Other programs put whatever they wish into the Stuffer Buffer, and you can set the
Stuffer Buffer within your own SBASIC programs with the HOT_STUFF command. You can
read it programatically using the HOT_STUFF$ function)

You can also set up Hotkeys to copy predefined strings into the current keyboard queue. This
can be useful for common phrases such as "Yours sincerely" or long command sequences such
as "F3 P D ENTER N P" which prints a spreadsheet from Abacus.

The second group of Hotkeys is concerned with executing and Picking programs. Hotkeys can
be set up execute programs either from file, or from Executable Things. You can define Hotkeys
which will Pick programs which are already executing, and Hotkeys which will Wake programs
or Executable Things.

Using one of this second group, you can use a Hotkey to pop up a program you want to use, on
top of the program you are using at the time.

50 03/05

How Hotkey System 2 works
All the Hotkey operations are performed by a Job called HOTKEY. There is a small task which
examines the keyboard queue after a keystroke has been put into it. When you press an ALT
key combination which has been set up as a Hotkey, this task will pass a special Event to the
HOTKEY Job which will leap into action and do whatever has been specified. If the attempt fails
(possibly because there is not enough memory) the HOTKEY Job will burp and retire into the
background again. If there is no room in the current keyboard queue, then Hotkeys, like any
other keystroke, will get lost.

Setting Hotkeys Using SBASIC
Using Hotkeys is very simple, but unfortunately, you do have to set them up first. HOTKEY
System 2 includes a number of SBASIC functions to enable Hotkeys to be set up, changed and
removed by SBASIC programs. Using functions, instead of procedures, enables error checking
to be carried out simply, and any corrective action taken. The HOTKEY System 2 functions (and
procedures) start with "HOT_" so you should have no problem identifying them. Most Hotkeys
will be set up in a BOOT file, but you can add, remove or change any Hotkeys at any time,
either by typing the appropriate commands into the SBASIC command console, or by RUNning
an SBASIC program.

Case Dependent Hotkeys
You can define Hotkeys in two ways. If you define a lower case Hotkey, then the Hotkey action
can usually be invoked by pressing ALT and the appropriate letter, regardless of whether the
SHIFT key is pressed or CAPSLOCK is set. If, however, you define an upper case Hotkey, then
this action, will only be invoked by ALT, and the upper case character.

For example, if these Hotkeys are set:

Hotkey Action

a Execute Alarm
Q Execute Quill
q Execute QRAM

"ALT Q" (ALT SHIFT Q) will execute Quill, while "ALT q" will execute QRAM. Both "ALT A" and
"ALT a" will execute the alarm clock.

Summary of Functions to set up Hotkeys

Function Sets Hotkey to

HOT_KEY (key, list of strings) copy strings to keyboard queue
HOT_CMD (key, list of commands) send commands to SBASIC
HOT_RES (key, filename) execute resident program
HOT_RES1 (key, filename) ... one copy only
HOT_CHP (key, filename) execute resident program
HOT_CHP1 (key, filename) ... one copy only
HOT_LOAD (key, filename) load and execute program
HOT_LOAD1 (key, filename) ... one copy only
HOT_THING (key, Thing name) execute Thing
HOT_PICK (key, Job name) Pick Job
HOT_WAKE (key, Job name) Wake Job

03/05 51

Errors when Setting Hotkeys
The functions used to set up, change and remove Hotkeys have two distinct error handling
methods. If the function is used incorrectly, (e.g. missing parameters), then execution of the
program will stop in the usual way. If, however, the parameters are correct, but you are trying to
do an operation which is not allowed, or proves to be impossible (e.g. redefining a Hotkey
without removing it, or trying to load a file, which does not exist), then the function will return an
error code. This error code can be used to ask the user (probably yourself) to do some
corrective action (e.g. put a particular disk in the drive) before the Hotkey function is called
again.

One error code, which can be returned from any of the functions, is ERR.IU (-9, in use). This
can occur if another Job has tied up the Hotkey system for more than 2 seconds. If there is a
long pause before an "in use" error return, this is the most likely reason.

Error Reporting
If you do not wish to do any error processing, it would be more convenient to call these
functions as procedures. A BOOT (or other program) would then stop automatically with the
usual cryptic error messages. Unfortunately this cannot be done directly with the standard
SBASIC interpreter, but the Hotkey system includes a simple procedure which will report the
error and stop if its parameter value is negative. This procedure, ERT, can be used with any
function which returns an error code (e.g. many of the Qtyp SPELL functions) as well as with the
Hotkey functions. Thus there are three main ways of calling the Hotkey functions:

hkerr = HOT_RES (' t', Qtyp) get error code from HOT_RES
PRINT HOT_RES (' t' , Qtyp) print error code from HOT_RES
ERT HOT_RES ('t', Qtyp) stop and report if error

Hotkey Filenames and Other Names
Some of the functions to set Hotkeys need to be supplied with a file name. You will not usually
need to specify a drive name as HOTKEY System 2 will use the Program Default (set up by
PROG_USE).

In general, the textual parameters of a Hotkey function can be given as either "strings" or
"names". A name must start with a letter, and contain only letters, digits and underscores. A
string can have any characters between apostrophes or quotes. If in doubt put the parameter
between quotes or apostrophes: particularly if you will be compiling your program.

Furthermore, when defining the Hotkey itself, the key is best placed between apostrophes of
quotes to avoid problems with the SBASIC name handling which does not distinguish between
upper and lower case.

Boot Programs for the Extended Environment
When the QPC starts up, or after being reset. The SBASIC interpreter will load and run a
SBASIC program called "BOOT". This program should be used to set up QPC to match the way
you wish to use it. This BOOT program will usually be stored on WIN1_ as WIN1_BOOT, alough
a floppy disk can also be used if you configure QPC to boot from a floppy first.

The majority of QL/QPC software falls into one of two main groups, "resident extensions" and
"executable programs". The other important group, SBASIC programs. SBASIC programs
compiled with QLiberator or Turbo are true "transient programs".

"Resident extensions" are provided to expand the capabilities of QPC. Some are supplied on
disk and need to be loaded in at the start of a session and remain resident in QPC for the whole
of that session. The Extended Environment comes built into SMSQ/E and does not need to be
loaded. Other typical examples are the Pointer Toolkit and the Spell extensions. All of these are
intended to be of use for many different programs throughout an entire session.

"Executable programs" are designed to come and go as required. These are executed as
required, and when you have finished with them, they go away, leaving QPC's memory free for
other executable programs. Typical examples are Quill, Abacus and the other Psion programs.

52 03/05

Some executable programs require specific resident extensions to be present. The reasons
vary. Most Qjump programs require the Extended Environment because it makes it simple to
provide the type of pop-up menus and non-destructive windows that we prefer to use. Qtyp
requires the Spell extensions, because we thought that it was necessary to separate out the
actual spelling checking so that it could be used in other programs as well (such as real word
processors). The Editor requires the Turbo Toolkit because it is Turbo compiled SBASIC and
uses some facilities not available in SMSQ/E.

As a general rule, a BOOT file should load all the resident extensions you require, before any
programs are started. This will avoid 'not complete' error messages when you try to load further
extensions. The BOOT file is used in much commercial software to give users instant access to
their new program. Many users never progress beyond this point, but re-boot their system every
time they wish to change programs.

The boundary between a supplier providing a very complex BOOT file to make it very easy to
use their software, and a supplier providing so complex a BOOT file that it becomes almost
impossible to use any other supplier's software is a very fine one.

There is one simple test that you can do to find out whether a particular program is likely to give
problems. Can you execute two copies of the program at the same time as the SBASIC
interpreter? In the case of programs written for the Pointer Interface, the answer will usually be
an unqualified yes. For other software you may have to do some detective work.

The manual for a software product should tell which of the files are resident extensions, and
which are executable program files. If it does not, then you must first look at the BOOT file for
the program. You need to find the command which EXECs the program itself. Before this you
may find some RESPR, LBYTES, CALL or LRESPR commands. If you find any POKEs, you
can probably give up. Next, reset QPC and LOAD the BOOT file, delete all of the SBASIC
commands except the RESPR, LBYTES, CALL, LRESPR and EXEC commands you have
found and add a second EXEC for the program. Now RUN this skeleton SBASIC BOOT
program - you should now be able to press CTRL and C to switch the keyboard from one copy
of the program, to the next and then to the SBASIC interpreter. If it turns out that the program is
so badly behaved that you cannot have two copies executing at the same time, then it is unlikely
that the program will tolerate any other software.

If you cannot execute the second copy of the program because there is not enough memory left,
then you will need to use the Psion option of the HOTKEY System 2.

If, while using a particular program, you find that bits of its windows tend to disappear, or get
eaten up by other programs, then you will need to execute the program with a Guardian window
using the HOTKEY System 2. If the program keeps on modifying the display while it is buried,
then you will need a Guardian window with the Freeze option.

To set up your own BOOT file, you will have to determine which resident extensions are needed
for each of the programs you wish to use. This should be stated in the manual. Alternatively,
you can examine the supplier's own BOOT file. Resident procedures will be any code loaded by
statements of the form:

a=RESPR(size): LBYTES flpl_filename,a: CALL a or
LRESPR (filename) or
base=RESPR (size) loading several files into one space
LBYTES flpl_filenamel, base: CALL base LBYTES flpl_filename2, base + a_bit:
CALL base + a_bit . . . etc.

These statements can be copied into your own BOOT file at the appropriate point, and the files
themselves copied onto your own BOOT disk. The statements may be scattered over several
lines to confuse you.

03/05 53

Sorting out BOOT files varies from the easy (e.g. The Editor) to the impossible (too many to
mention). Very easy BOOT files would consist of "EXEC flp1_filename", in which case you
need to add nothing to your own BOOT file unless you wish to HOTKEY the program with
HOT_RES, HOT_CHP or HOT_LOAD. Difficult conversions are where the BOOT file indulges
in copyright messages, pretty borders, playing tunes or other methods of obscuring the useful
bits of code. Impossible BOOT files are those which include POKEs, or start an application with
a CALL statement. These can, sometimes be used, but require the attention of an expert
machine code hacker to convert them to a sanitary form.

Some resident extensions interact with others. If this happens, then some care is required with
the ordering of the resident extensions. The HOTKEY System 2 interacts with the ALTKEY
facility. The Pointer Interface interacts with Lightning.

Load any program specific resident extensions and other Toolkits. When all your resident
extensions have been loaded, you should set up the Hotkeys you require, and include a
HOT_GO command to get the HOTKEY Job going.

Examples
These example BOOT files are intended to start you off. We specify the drive explicitly, and the
file names are between apostrophes. The first is for clarity only, the second is a personal
preference.

BOOT_PSION Program
This boot file sets up a Psion plus Qtyp environment. All four Psion programs are permanently
resident, although only Quill is started.

100 REMark - Load all our extensions
110 :
160 LRESPR ' f lpl_qtyp_spell' spelling checker extensions
170 :
180 REMark - Extensions loaded, stuff our QPC full of the
190 REMark - Psion programs
200 :
210 ERT HOT_RES ('t', ' f lpl_qtyp') Qtyp in case we use Quill
220 ERT HOT_RES ('q', 'f lpl_quill', p) ALT Q for a new Quill
230 ERT HOT_RES ('a', 'f lpl_abacus', p) ALT A for Abacus
240 ERT HOT_RES ('r', 'f lpl_archive', p) ALT R for Archive
250 ERT HOT_RES ('e', 'f lpl_easel', p) ALT E for a new Easel
260 :
270 HOT_GO get HOTKEY going
280 :
290 : REMark - now we set some HOTKEYS for picking Jobs
300 : REMark - to pretend that we are using Taskmaster
310 :
320 ERT HOT_PICK (' 0' , ") SBASIC and other no-name Jobs
330 ERT HOT_PICK ('1', 'Quill')
340 ERT HOT_PICK ('2', 'Abacus')
350 ERT HOT_PICK ('3', 'Archive')
360 ERT HOT_PICK ('4', 'Easel')
370 HOT_LIST tell us what we have, please
380 PAUSE 300: HOT_DO q start with Quill only

54 03/05

BOOT_ANOTHER Program

100 REMark - First shrink SBASIC' s windows a bit
110 WINDOW #0;512, 42, 0,214:BORDER #0;1,4,0
120 WINDOW #1;256,172,256,36:BORDER #1;1,255
130 WINDOW #2; 256,172, 0,36:BORDER #2;1,255
150 :
210 LRESPR 'flp1_qtyp_spell' spelling checker extensions
220 LRESPR 'flp1_Qpac2'
230 :
240 ERT HOT_WAKE ('x', 'Exec') Exec menu of QPAC 2
250 ERT HOT_WAKE ('p', 'Pick') Pick menu of QPAC 2
260 ERT HOT_RES ('t', 'flp1_qtyp') Qtyp
270 ERT HOT_RES ('c', ' flp1_calc') Pop up calculator
280 ERT HOT_RES ('k', ' flp1_calendar') ... our calendar
290 ERT HOT_RES ('w', ' flp1_alarm') ... and the alarm
300 ERT HOT_LOAD ('d', ' flp1_QD') load QD on demand
310 ERT HOT_LOAD ('8', ' flp1_Text87') ...orText87
330 HOT_GO get HOTKEY going as well
340 EXEC ' f lp1_Clock' clock around the clock
350 EXEC ' f lp1_Sysmon' we need this to know what is going on
360 :
370 ERT HOT_PICK ('b', ") pick SBASIC
380 HOT_LIST
390 PAUSE 300: HOT_DO e start off with the Editor
400 PAUSE 100: HOT_DO b but with SBASIC on top

BOOT_HI_RES
BOOT program for a high resolution system

100 REMark Hi Res BOOT program
110 :
120 REMark For 800x600 display in 65536 colours
130 :
140 DISP_COLOUR 3,800,600
150 COLOUR_QL
160 BGCOLOUR_24 1.679652E7
170 WINDOW#0,800,120,0,330 : BORDER#0,1,1
180 WINDOW#1,400,300,400,30 : BORDER#1,1,255
190 WINDOW#2,400,300,0,30 : BORDER#2,1,255
200 INK#0,7 : PAPER#0,0 : CSIZE#0,1,1
210 INK#1,0 : PAPER#1,7
220 INK#2,7 : PAPER#2,1
230 CLS#0 : CLS#1 : CLS#2
240 :
250 REMark Load some resident extensions
260 LRESPR win1_system_qlib_run336mod Qliberator runtimes
270 LRESPR win1_system_menu_rext Menu extensions
320 :
330 REMark Set up the pointer system
340 LRESPR win1_pe_qpac_qpac2
350 :
390 REMark Set up Hot keys
400 ERT HOT_PICK('b','') Pick Basic
410 ERT HOT_THING('1','Files';'\dWIN1_') Files thing for WIN1_
420 ERT HOT_THING(CHR$(232),'Button_sleep') Sleep thing
430 ERT HOT_THING('.','Button_Pick') Button frame
440 ERT HOT_LOAD1('x','win1_xchange_xchange')
450 :
470 ERT HOT_WAKE('P','Pick') Call the Pick menu
480 ERT HOT_WAKE('R','Rjob') Call the Rjob menu
490 :

03/05 55

500 REMark Set up now go
510 :
520 REMark Create the buttons for the screen
530 :
550 BT_SLEEP 'Pick'
560 BT_SLEEP 'Exec'
570 BT_SLEEP 'Rjob'
580 BT_HOTKEY 'x','Xch' Put Xchange on a button
590 BT_HOTKEY '1','WIN1' Put Win1_ on a button
600 :
610 HOT_DO 'b' Pick the button frame
620 HOT_DO CHR$(232) Put system(SBASIC) to sleep
630 :
640 HOT_GO Start the hotkey system
650 :
660 REMark SBASIC setups
670 PROG_USE win1_
680 DATA_USE win1_

56 03/05

file types
files
All I/O on QPC is to or from a 'logical file'. Various file types exist.

data SBASIC programs, text files. Created using PRINT, SAVE, accessed
using INPUT, INKEY$, LOAD etc.

exec An executable transient program. Saved using SEXEC, loaded using
EXEC, EXEC_W etc.

code Raw memory data, screen images, etc. Saved using SBYTES, loaded
using LBYTES.

flp
floppy disk drive
device
QPC can access 2 floppy disk drives (called FLP1_ and FLP2_) which correspond to the A: and
B: drive of the host PC.

QPC will support double density (DD) and high density (HD) QDOS and MSDOS formatted
disks .

Double density disks will store up to 720K bytes (1440 sectors) of data, and high density disks
will store up to 1.4M bytes (2880 sectors) of data.

03/05 57

functions and
procedures
SBASIC functions and procedures are defined with the DEFine FuNction and DEFine
PROCedure statements. A function is activated (or called) by typing its name at the appropriate
point in a SBASIC expression. The function must be included in an expression because it is
returning a value and the value must be used. A procedure is activated (or called) by typing its
name as the first item in a SBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters after
the function or procedure name. This list is compared to a similar list appended after the name
of the function or procedure when it was defined. This second list is called the formal
parameters of the function or procedure. The formal parameters must be SBASIC variables.
The actual parameters must be an array, an array slice or a SBASIC expression of which a
single variable or constant is the simplest form.

Since the actual parameters are actual expressions, they must have an actual type associated
with them. The formal parameters are merely used to indicate how the actual parameters must
be processed and so have no type associated with them. The items in each list of parameters
are paired off in order when the function or procedure is called and the formal parameters
become equivalent to the actual parameters. There are three distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the formal parameter in the
function or procedure then the data is also assigned to the corresponding actual parameter.

If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure. Note that a variable can be turned into an
expression by enclosing it within brackets.

If the actual parameter is a variable but has not previously been set then assigning data to the
corresponding formal parameter will set the variable specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal statement. Local
variables have no effect on similarly named variables outside the function or procedure in which
they are defined and so allow greater freedom in choosing sensible variable names without the
risk of corrupting external variables. A local variable is available to any inside function or
procedure called from the procedure function in which it is declared to be local unless
the function or procedure called contains a further local declaration of the same variable name.

Functions and procedures in SBASIC can be used recursively. That is a function or procedure
can call itself either directly or indirectly.

Command Function

DEFine FuNction define a function
DEFine PROCedure define a procedure
RETurn leave a function or procedure

(return data from a function)
LOCal define local data in a function or

procedure

58 03/05

graphics
It is important to realise that the QPC screen has non-square pixels and that changing screen
mode will change the shape of the pixels. Thus if the graphics procedures were simply pixel
based they would draw different shapes in the two modes. For example, in one mode we would
have a circle while the same figure in the other mode would be an ellipse.

The graphics procedures ensure that whatever screen mode is in use, consistent figures are
produced. It is not possible to use a simple pixel count to indicate sizes of figures, so instead the
graphics procedures use an arbitrary scale and co-ordinate system to specify sizes and
positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window. Note
that this is not the same as the Pixel Origin used to define the position of Windows and Blocks
etc. The graphics origin allows a standard Cartesian co-ordinate system to be used. A graphics
cursor is updated after each graphics operation: subsequent operations can either be relative to
this cursor or can be absolute, i.e. relative to the graphics origin.

The Graphics Coordinate System

The scaling factor is such that the full distance in the vertical direction in the specified or
default window has length 100 by default and can be changed with the SCALE command. The
scale in the x direction is equal to the scale in the y direction. However, the length of line which
can be drawn in the x direction is dependent on the shape of the window. Increasing the scale
factor increases the maximum size of the figure which can be drawn before the window size is
exceeded. If the graphics output is switched to a different size of window then the subsequent
size of the output is adjusted to fit the new window. If the figure exceeds its output window then
the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space in which the
figures are drawn. The SCALE command allows the graphics origin to be set so allowing the
window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or default channel
and the output is drawn in the INK colour for that channel.

03/05 59

100
 y

 (0,0) x

--
Command Function

--
CIRCLE draw an ellipse or a circle }
LINE draw a line } absolute
ARC draw an arc of a circle }
POINT plot a point }

--
CIRCLE_R draw an ellipse or a circle }
LINE_R draw a line } relative
ARC_R draw an arc of a circle }
POINT_R plot a point }

--
SCALE set scale and move origin
FILL fill in a shape
CURSOR position text

--

graphics fill
Figures drawn with the graphics and turtle graphics procedures can be optionally 'filled' with a
specified stipple or colour. If FILL is selected then the figure is filled as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting them. When the
figure closes there are two points on the same horizontal line. These two points are connected
by a line in the current ink colour and the process repeats. Fill must always be reselected before
drawing a new figure to ensure that the buffer used to store the list of points is reset.

The following diagram illustrates FILL:

warning: There is an implementation restriction on FILL. FILL must not be used for re-entrant
shapes (i.e. a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

60 03/05

(75,50)

(50,80)

(10,20) FILL 1:LINE 10,20 TO 75,50 TO 50,80

history virtual
device
The HISTORY virtual device is not associated with any physical hardware. HISTORY devices
are buffers for storing information or passing it from one task to another. The HISTORY device
is single ended, what goes in one end, comes out the same end in the reverse order (LIFO - last
in first out).

A HISTORY device is much simpler than a PIPE device as it only has one end. It is used to
store a number of messages which may then be retrieved in reverse order: if it becomes full, the
oldest messages are thrown away. The messages are separated by newline characters.

There are two types of history devices: private and public. Private HISTORY devices are for use
within a particular application and may only have one channel open to them. Public HISTORY
devices are named and so may be accessed by many applications at the same time, or at
different times. A public HISTORY device may even be used as a "mailbox".

A HISTORY device is opened by name, just like any other device. The name starts with
"HISTORY" which is, for a public HISTORY device, followed by public name and then,
optionally, the HISTORY device size. If no size is given, 1 kilobyte of message space is
assumed. If a public HISTORY device already exists, then the size is ignored!

HISTORY A private HISTORY; 1024 bytes total space
HISTORY _512 A private HISTORY, 512 bytes total space
HISTORY _thoughts A public HISTORY for thoughts
HISTORY _box_80 An 80 byte small mailbox called BOX

Single character names should not be used: these are reserved as keys for special variations
which may be made available in the future.

HISTORY _U_FILES A public HISTORY with all entries unique???

Messages may be put into a HISTORY device by either using PUT or PRINT. If the HISTORY
device becomes full, the oldest message(s) are thrown away.

Messages may be taken out using GET or INPUT. But which message?

For a private HISTORY it is fairly simple. The first GET or INPUT after a message has been put
into the HISTORY will get the most recent message. The next GET or INPUT will get the
previous message until there are either no messages left (in which case GET or INPUT return
null strings) or another message is put in. Note that GETting or INPUTing messages does not
take them out of the HISTOTY.

OPEN_NEW #4, HISTORY _512 Open a private HISTORY device to hold 512
bytes

PRINT #4, msg1$ For a private HISTORY, the message need not
be atomic

PUT #4, msg2$...but this also puts a message in.
INPUT #4, a$ Inputs msg2$ into a$
GET #4,b$ Gets msg1$ into b$

03/05 61

For a public HISTORY, the channels are fairly independent. A channel being used to read
messages would continue to fetch messages in reverse order even if new messages are being
added through other channels. In order to get the most recent message, a channel being used
for read operations only needs to be able to reset its internal pointer. This is possible using the
file positioning facility. Usually the position will be set to 0 (the most recent message) but it may
be set to any (smallish) number.

GET #4\0, a$, b$ Get the most recent and next most recent messages
GET #4\4, x$ Get the fifth most recent message.

HISTORY has some characteristics of a filing system device. You can get a directory of public
HISTORY devices, you can VIEW a public HISTORY and you can delete a public HISTORY.

DIR HISTORY Get a list of public HISTORY devices
VIEW HISTORY _thoughts Have a look at my thoughts
DELETE HISTORY _thoughts ...and get rid of them

identifier
An SBASIC identifier is a sequence of letters, numbers and underscores.

define: letter := | a..z
 | A..Z

number := | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

identifier := letter * |[letter | number | _ |] *

example: i. a
ii. limit_1
iii. current_guess
iv. counter

An identifier must begin with a letter followed by a sequence of letters, numbers and
underscores and can be up to 255 characters long. Upper and lower case characters are
equivalent.

Identifiers are used in the SBASIC system to identify variables, procedures, functions, repetition
loops, etc.

waring: NO meaning can be attributed to an identifier other than its ability to identify
constructs to SBASIC. SBASIC cannot infer the intended use of an identifier from the
identifier's name!

keyword
SBASIC keywords are identifiers which are defined in the SBASIC Keyword Reference Guide.
Keywords have the same form as a SBASIC standard identifier. The case of the keyword is not
significant. Keywords are echoed as a mixture of upper and lower case letters and are always
reproduced in full. The upper case portion indicates the minimum required to be typed in for
SBASIC to recognise the keyword.

The set of SBASIC keywords may be extended by adding procedures to QPC. It is a good idea
to define these with their names in upper case and this will indicate their special function in the
SBASIC system. Conversely, ordinary procedures should be defined with their names in lower
case.

warning: Existing keywords cannot be used as ordinary identifiers within a SBASIC program.
SBASIC keywords may be found by typing EXTRAS at the command prompt.

62 03/05

maths
functions
SBASIC has the standard trigonometrical and mathematical functions.

Function Name

COS cosine
SIN sin
TAN tangent

ATAN arctangent
ACOT arcotangent

ACOS arcosine
ASIN arcsine

COT cotangent
EXP exponential
LN natural logarithm
LOG10 common logarithm

INT integer
ABS absolute value

RAD convert to radians
DEG convert to degrees

PI return the value of π

RND generate a random number
RANDOMISE reseed the random number generator

03/05 63

mdv
microdrive directory device
Microdrives provided the main permanent storage on the Sinclair QL. Each Microdrive cartridge
had a capacity of at least 100Kbytes.

Microdrives are not supported in QPC.

nul virtual
device
The NUL virtual device is not associated with any physical hardware. NUL devices are
completely dummy.

The NUL device may be used in place of a real device. The NUL device is usually used to
throwaway unwanted output. It may, however, be used to provide dummy input or to force a job
to wait forever. There are five variations.

NULP waits (forever or until the specified timeout) on any input or output operation.

NUL, NULF, NULZ and NULL ignore all operations (the output is thrown away).

NUL, NULF, NULZ and NULL return a zero size window in response to window information
requests. Pointer Information calls (lOP.PINF , lOP.RPTR) return an invalid parameter error.

NUL is an output only device, all input operations return an invalid parameter error.

NULF emulates a null file. Any attempt to read data from NULF will return an End of File Error
as will any file positioning operation. Reading the file header will return 14 bytes of zero (no
length, no type).

NULZ emulates a file filled with zeros. The file position can be set to anywhere. Reading the file
header will return 14 bytes of zero (no length, no type).

NULL emulates a file filled with null lines. The file appears to be full of the newline character
(10). The file position may be set to anywhere. Reading the file header will return 14 bytes of
zero (no length, no type).

64 03/05

operators
--

Operator Type Function
--

= floating string logical type 2 comparison
== numeric string almost equal ** (type 3 comparison)
+ numeric addition
- numeric subtraction
/ numeric division
* numeric multiplication
< numeric string less than (type 2 comparison)
> numeric string greater than (type 2 comparison)
<= numeric string less than or equal to (type 2 comparison)
>= numeric string greater than or equal (type 2 comparison)
<> numeric string not equal to (type 3 comparison)
& string concatenation
&& bitwise AND
|| bitwise OR
^^ bitwise XOR
~ bitwise NOT
OR logical OR
AND logical AND
XOR logical XOR
NOT logical NOT
MOD integer modulus
DIV integer divide
INSTR string type 1 string comparison
^ floating raise to the power
- floating unary minus
+ floating unary plus

--
**almost equal - equal to 1 part in 107

If the specified logical operation is true then a value not equal to zero will be returned. If the
operation is false then a value of zero will be returned.

precedence The precedence of SBASIC operators is defined in the table above. If the order of
evaluation in an expression cannot be deduced from this table then the relevant
operations are performed from left to right. The inbuilt precedence of SBASIC
operators can be overriden by enclosing the relevant sections of the expression
in parentheses.

highest unary plus and minus
string concatenation
INSTR
exponentiation
multiply, divide, modulus and integer divide
add and subtract
logical comparison
NOT (bitwise or logical)
AND (bitwise or logical)

lowest OR and XOR (bitwise or logical)

03/05 65

pipe
virtual device
The PIPE virtual device is not associated with any physical hardware. PIPE devices are buffers
for storing information or passing it from one task to another. The PIPE is double ended: what
goes in one end, comes out the other in the same order (FIFO - first in first out).

There are two variations on the PIPE driver: named and unnamed pipes. Both of these are used
to pass data from one program to another. Unnamed pipes cannot be opened with the SBASIC
OPEN commands but are opened automatically by the EX and EW commands when these are
required to set up a "production line" of Jobs. Whereas, if a pipe is identified by a name, any
number of Jobs (including SBASIC) can open channels to it as either inputs or outputs.

If, using named pipes, matters become confused, then that is a problem to be solved by the
Jobs themselves. This is not as bad as it sounds. Unlike other devices, named pipes transfer
multiple byte strings atomically unless the pipe allocated is too short to hold the messages. This
means that provided the messages are shorter than the pipe, many jobs can put messages into
a named pipe and many jobs can take messages out of a named pipe without the messages
themselves becoming scrambled.

If a PIPE is shared in this way, there are two simple ways of ensuring that the messages are
atomic. The first, using fixed length messages, if not available to SBASIC programs. The
second, using "lines" terminated by the newline character, works perfectly. N.B. the standard
PRINT command will not necessarily send a line as a single string for each item output.

PRINT #3,a$ \ b$ Bad, sends 4 strings: the newline characters are
separate

PRINT #3,a$ & CHR$ {10); Good, sends 1 string, including the newline
INPUT #4,b$ Good, reads a single line from the pipe

Named pipes should be opened with OPEN_NEW (FOP _NEW) for output and OPEN_IN (FOP
_IN) for input. A named pipe is created when there is an open call for a named pipe, which does
not exist. It goes away when there are no longer any channels open to it and it is has been
emptied. As well as the name, it is possible to specify a length for a named pipe. If the pipe
already exists, the length requested is ignored.

OPEN_NEW #4, PIPE_xp1 Open named output pipe of default length
(1024 bytes)

OPEN_NEW #5, PIPE_frd_2048 Open named output pipe of length 2048 bytes
OPEN_IN #6, PIPE_xfr Open named input pipe

66 03/05

pixel
coordinate
system
The pixel coordinate system is used to define the positions and sizes of windows, blocks and
cursor positions on the QPC screen. The coordinate system has its origin in the top left hand
corner of the default window (or screen). The system will use the nearest pixel available for the
particular mode set making the coordinate system independent of the screen mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW, while some
are always relative to the current window origin, e.g. BLOCK

The Pixel Coordinate System

03/05 67

(0,0) x (0,XLIM)

y

(YLIM,0)

program
An SBASIC program consists of a sequence of SBASIC statements, where each statement is
preceded by a line number. Line numbers are in the range of 1 to 32767.

--
Command Function

--
RUN start a loaded program

LRUN load a program from a device and start it

[CTRL] [SPACE] force a program to stop
--

syntax: line_number := *[digit]* {range 1..32767}

*[line_number statement *[:statement]*]*

example: i. 100 PRINT "This is a valid line number"
RUN

ii. 100 REMark a small program
110 COLOUR_QL
120 FOR foreground = 0 TO 7
130 FOR contrast = 0 TO 7
140 FOR stipple = 0 TO 3
150 PAPER foreground, contrast, stipple
160 CURSOR 0,70
170 FOR n = 0 TO 2
180 SCROLL 2,1
190 SCROLL -2,2
200 END FOR n
210 END FOR stipple
220 END FOR contrast
230 END FOR foreground
RUN

QDOS
QL
The QDOS operating system is a predecessor of the SMSQ/E operating system. QDOS was
originally used in the Sinclair QL computer. Circa 1983

The Sinclair QL used a version of BASIC known as SuperBASIC. SBASIC and SMSQ/E used in
QPC are direct descendants of SuperBASIC, and QDOS.

SMSQ/E includes all the QL SuperBASIC commands, the Toolkit 2 commands, Pointer
interface, Window manager, and the commands which have been provided to support the
various add-on drivers. SMSQ/E supports 99.9% of SuperBASIC. SMSQ/E supports all the
devices, which were supported by the drivers supplied with the Atari QL Emulator, the GOLD
card and the QXL. The (Super) Gold card is a hardware add-on to the Sinclair QL, and the QXL
is a PC add-on card containing a QL compatible computer.

68 03/05

ram
virtual directory device
The RAM device behaves like a very fast disk drive. It is so fast because being virtual, there is
virtually nothing to move to get information in and out. It is, in fact, no more than a reserved area
of SMSQ/E's main memory (its RAM - Random Access Memory). This means, of course, that
any space taken by a RAM disk is not available to programs executing in QPC. Furthermore,
any data stored in a RAM disk will be lost when QPC is exited or reset!

RAM disks in the QPC may be of any size, subject to there being enough memory. The normal
usage of a RAM disk would be to use it as a temporary storage area, or to speed up the
operation of programs with very disk intensive operations.

A dynamic RAM Disk is created just by accessing it with any normal operation (e.g. DIR). This
type of RAM Disk takes memory as required, and releases any memory as files are deleted or
truncated.

A fixed RAM disk is created by formatting it: the size, in sectors, is given in place of the usual
medium name. This pre-allocates all the space that will be available in the RAM disk.

FORMAT ram2_80

This removes the old RAM disk number 2, and sets up a new RAM disk of 80 sectors. A RAM
disk may be removed by giving either a null name or zero sectors

FORMAT ram1_ or FORMAT ram1_0

The RAM disk number should be between 1 and eight, inclusive, while the number of sectors
(512 bytes) is only limited by the memory available.

SMSQ/E
SMSQ/E is the QPC Operating System used by QPC, and supervises:

Task Scheduling and resource allocation
Screen I/O (including windowing)
Disk drive I/O
Parallel and serial channel communication
Keyboard input
Memory management

A full description of SMSQ is beyond the scope of this guide but a brief description is included.

system calls
System calls are processed by SMSQ in supervisor mode. When in supervisor mode, SMSQ
will not allow any other job to take over the processor. System calls processed in this way are
said to be atomic, i.e. the system call will process to completion before relinquishing the
processor. Some system calls are only partially atomic, i.e. once they have completed their
primary function they will relinquish the processor if necessary. Unless specifically requested all
the system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of the SMSQ
system vectors with appropriate parameters in the processor registers. The action taken by
SMSQ following a system call is dependent on the particular call and the overall state of the
system at the time the call was made.

03/05 69

input/output

SMSQ supports a multitasking environment and therefore a file can be accessed by more than
one process at a time. The SMSQ filing sub-system can handle files which have been opened
as exclusive files or as shared files. A shared file cannot be written to. QPC devices are
processed by the serial I/O sun-system. The filing sub-system and the serial I/O sub-system
together make up the redirectable I/O system. As its name suggests any data output by this
system can be redirected to any other device also supported by the redirectable I/O system.

The device names required by SMSQ are the same as the device names required by SBASIC
and are discussed in the concept section devices. The collection of standard devices supplied
with QPC can be expanded.

devices
The standard devices included in the system are discussed in this guide in the section devices.
Further devices may be added to the system, given a name (e.g. SER1, PRT) and then
accessed in the same way as any other QPC device.

multitasking
Jobs will be allowed a share of the CPU in line with their priority and competition with other jobs
in the system. Jobs running under the control of SMSQ can be in one of three states:

active: Capable of running and sharing system resources. A job in this state
may not be running continuously but will obtain a share of the CPU in
line with its priority.

suspended: The job is capable of running but is waiting for another job or I/O. A job
may be suspended indefinitely or for a specific period of time.

inactive: The job is incapable of running, its priority is 0 and so it can never
obtain a share of the CPU

SMSQ will reschedule the system automatically at a rate related to the 50 Hz frame rate. The
system will also be rescheduled after certain system calls.

70 03/05

example: This program generates an on-screen readout of the real-time clock, running as an
independent job.

First RUN this program with a formatted disk in floppy drive 1. This generates a
machine code title called 'clock'. Wait for the drive to stop.

Then type:

EXEC flp1_clock

and a continuous time display will appear at the top right of the command window.

100 c=RESPR(100)
110 FOR i = 0 TO 68 STEP 2
120 READ x:POKE_W i+c,x
130 END FOR i
140 SEXEC flp1_clock,c,100,256
1000 DATA 29439,29697,28683,20033,17402
1010 DATA 48,13944,200,20115,12040
1020 DATA 28691,20033,17402,74,-27698
1030 DATA 13944,236,20115,8279,-11314
1040 DATA 13944,208,20115,16961,16962
1050 DATA 30463,28688,20035,24794
1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data terms are, in
order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin

These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in monitor mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white paper, red ink is
256*7 + 2 = 1794

03/05 71

repetition
Repetition in SBASIC is controlled by two basic program constructs. Only the FOR construct
must be identified to SBASIC:

REPeat [identifier] FOR identifier = range
statements statements

END REPeat [identifier] END FOR [identifier]

These two constructs are used in conjunction with two other SBASIC statements:

NEXT [identifier] EXIT [identifier]

Processing a NEXT statement will either pass control to the statement following the appropriate
FOR or REPeat statement, or if a FOR range has been exhausted, to the statement following
the NEXT.

Processing an EXIT will pass control to the statement after the END FOR or END REPeat
selected by the EXIT statement. EXIT can be used to exit through many levels of nested repeat
structures. EXIT should always be used in REPeat loops to terminate the loop on some
condition.

A combination of NEXT, EXIT and END statements allows FOR and REPeat loops to have a
loop epilogue added. A loop epilogue is a series of SBASIC statements which are executed on
some special condition arising within the loop:

FOR identifier = for_list
statements exit

NEXT [identifier] next
epilogue

END FOR [identifier]

The loop epilogue is only processed if the FOR loop terminates normally. If the loop terminates
via an EXIT statement then processing will continue at the END FOR and the epilogue will not
be processed.

It is possible to have a similar construction in a REPeat loop:

 REPeat [identifier]
statements

IF condition THEN NEXT [identifier]
epilogue

END REPeat [identifier]

This time entry into the loop epilogue is controlled by the IF statement. The epilogue will or will
not be processed depending on the condition in the IF statement. A SELect statement can also
be used to control entry into the epilogue.

72 03/05

screen
Some QL programs write directly to the display memory. This can cause display problems with
QPC, as the display memory is not in the same place as in the QL.

The QPC_QLSCREMU command enables or disables the original QL screen emulation. When
emulating the original screen, all memory write accesses to the area $20000-$207FFF are
intercepted and translated into writes to the first 512x256 pixels of the big screen area. If the
screen is in high colour mode, additional colour conversion is done.

Possible values are:
-1: automatic mode
0: disabled (default)
4: force to 4 colour mode
8: force to 8 colour mode

When in QL colour mode the emulation just transfers the written bytes to the larger screen
memory, i.e. when the big mode is in 4 colour mode, the original screen area is also treated as
4 colour mode. In high colour mode however the colour conversion can do both modes. In this
case you can pre-select the emulated mode (4, 8 as parameter) or let the last issued MODE call
decide (automatic mode). Please note that that the automatic mode does not work on a per-job
basis, so any job which issues a MODE command changes the behaviour globally.

Please also note that this transition is one-way only, i.e. bytes written legally to the first 512x256
pixels are not transferred back to the original QL screen (in case of a high colours screen this
would hardly be possible anyway). Unfortunately this also means that not all old programs run
perfectly with this type of emulation. If you experience problems start the misbehaving
application in 512x256 mode.

03/05 73

slicing
Under certain circumstances it is possible to refer to more than one element in an array i.e. slice
the array The array slice can be thought of as defining a subarray or a series of subarrays to
SBASIC. Each slice can define a continuous sequence of elements belonging to a particular
dimension of the original array. The term array in this context can include a numeric array, a
string array or a simple string.

It is not necessary to specify an index for the full number of dimensions of an array. If a
dimension is omitted then slices are added which will select the full range of elements for that
particular dimension, i.e. the slice (0 TO). SBASIC can only add slices to the end of a list of
array indices.

syntax: index := | numeric_exp {single element}
 | numeric_exp TO numeric_exp {range of elements}
 | numeric_exp TO {range to end}
 | TO numeric_expression {range from beginning}

array_reference := | variable
| variable ([index * [,index] *])

An array slice can be used to specify a source or a destination subarray for an assignment
statement.

example: i. PRINT data_array
ii. PRINT letters$(1 TO 15)
iii. PRINT two_d_array (3 , 2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays.

Thus
a$(n) will select the nth character.
a$(n TO m) will select all characters from the nth to the mth, inclusively
a$(n TO) will select from a character n to the end, inclusively
a$(1 TO m) will select from the beginning to the nth character inclusively
a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MID$, RIGHT$. These are not necessary in
SBASIC. Their equivalents are specified below:

--
SBASIC Other BASIC

--
a$(n) MID$(a$,n,1)
a$(n TO m) MID$ (a$,n,m+1-n)
a$(1 TO n) LEFT$ (a$,n)
a$(n TO) RIGHT$ (a$,LEN(a$)+1-n)

--

warning: Assigning data to a sliced string array or string variable may not have the desired
effect. Assignments made in this way will not update the length of the string. The
length of a string array or string variable is only updated when an assignment is
made to the whole string.

74 03/05

start up
Immediately after starting or resetting QPC the screen will be cleared and the default screen is
displayed.

QPC has the ability to 'boot' itself up from programs contained in either the Hard disk or in
Floppy drive 1. If a disk is found and if it contains a file called BOOT it is loaded and run.

default screen
The QL has three default channels which are linked to three default windows.

Channel 0 is used for listing commands and error messages, channel 1 for program and
graphics output and channel 2 for program listings. The default channel can be modified using
the optional channel specifier in the relevant command.

03/05 75

2 1

0

sound
QPC can emit sound by playing sampled data using the SMSQ/E Samples Sound System (not
explained here) or by an emulation of the QL's second processor (an 8049). The later is
controlled by specifying:

 up to two pitches
 the rate at which the sound must move between the pitches, the ramp
 how the sound is to behave after it has reached one of the specified pitches, the wrap
 if any randomness should be built into the sound, i.e. deviations from the ramp
 if any fuzziness should be built into the sound. i.e. deviations on every cycle of the sound

Fuzziness tends to result in buzzy sounds while randomness, depending on the other
parameters, will result in 'melodic' sounds or noise.

The complexity of the sound can be built up stage by stage gradually building more complex
sounds. This is, in fact, the best way to master sound on QPC.

Specify a duration and a single pitch. The specified pitch will be beeped for the specified time.

LEVEL 1

pitch

time

This is the simplest sound command, other than the command to stop the sound, on
QPC.

LEVEL 2
A second pitch and a gradient can be added to the command. The sound will then
'bounce' between the two pitches at the rate specified by the gradient.

The sounds produced at this level can vary between: semi musical beeps, growls,
zaps and moans. It is best to experiment.

pitch 2
pitch

pitch 1

time

76 03/05

LEVEL3
A parameter can be added which controls how the sound behaves when it becomes
equal to one of the specified pitches. The sound can be made to 'bounce' or 'wrap'.

The number of wraps can be specified, including wrap forever. It is even more
important to experiment.

pitch 2
pitch

pitch 1

time

pitch 2
pitch

pitch 1

time

LEVEL4
Randomness can be added to the sound. This is a deviation from the specified step
or gradient.

Depending on the amount of randomness added in relation to the pitches and the
gradient, it will generate a very wide and unexpected range of sounds.

pitch 2

pitch

pitch 1

time

03/05 77

LEVEL 5
More variation can be added by specifying 'fuzziness'. Fuzziness adds a random
factor to the pitch continuously Fuzziness tends to make the sound buzz.

Combining all of the above effects can make a very wide range of sounds, many of
them unexpected. QPC sound is best explored through experiment. By specifying a
time interval of zero the sound can be made to repeat forever and so a sequence of
BEEP commands can be used until the sound generated is the sound which is
required. A word of warning: slight changes in the value of a single parameter can
have alarming results on the sound generated.

statement
An SBASIC statement is an instruction to QPC to perform a specific operation, for example:

LET a = 2

will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual statements
from each other by a colon (:), for example:

LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result back in a. The answer
will then be printed out

If a line is not preceded by a line number then the line is a direct command and SBASIC
processes the statement immediately. If the statement is preceded by a line number then the
statement becomes part of a SBASIC program and is added into the SBASIC program area for
later execution.

Certain SBASIC statements can have an effect on the other statements over the rest of the
logical line in which they appear i.e. IF, FOR, REPeat, REM, etc. It is meaningless to use
certain SBASIC statements as direct commands.

78 03/05

string arrays
string variables
String arrays and numeric arrays are essentially the same, however there are slight differences
in treatment by SBASIC. The last dimension of a string array defines the maximum length of the
strings within the array. String variables can be any length up to 32766. Both string arrays and
string variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are not the
same then either the right hand string is truncated to fit or the length of the left hand string is
reduced to match. If an assignment is made to a sliced string then if necessary the 'hole' defined
by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the dimension
selects the whole string while specifying a single element will pick out a single character and
specifying a slice will define a sub string.

comment: Unlike many BASICs SBASIC does not treat string arrays as fixed length strings. If
the data stored in a string array is less than the maximum size of the string array
then the length of the string is reduced.

warning: Assigning data to a sliced string array Or string variable may not have the desired
effect. Assignments made in this way will not update the length of the string and so it
is possible that the system will not recognise the assignment. The length of a string
array or a string variable is only updated when an assignment is made to the whole
string.

--
Command Function

--
FILL$ generate a string
LEN find the length of a string

--

03/05 79

string
comparison
order . (decimal point/full stop)

digits or numbers in numerical order
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
space ! " # $ % & ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ ©
other non printing characters

The relationship of one string to another may be:

equal: All characters or numbers are the same or equivalent

lesser: The first part of the string, which is different from the corresponding
character in the second string, is before it in the defined order.

greater: The first part of the first string which is different from the corresponding
character in the second string, is after it in the defined order.

Note that a '.' may be treated as a decimal point in the case of string comparison
which sorts numbers (such as SBASIC comparisons). Note also that comparison of
strings containing non-printable characters may give unexpected results.

types of comparison
type 0 case dependent - character by character comparison

type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SBASIC system.

Usage type 1 File and variable comparison
type 2 SBASIC <, <=, =, >= ,>, INSTR and <>
type 3 SBASIC == (equivalence)

80 03/05

syntax
definitions
SBASlC syntax is defined using a non-rigorous 'meta language' type notation. Four types of
construction are used :

| | Select one of
[] Enclosed item(s) are optional
* * Enclosed items are repeated

.. Range
{ } Comment

e.g. | A | B | A or B
[A] A is optional
* A * A is repeated
A..Z A, B, C, etc
{this is a comment}

Consider a SBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and finishing with an optional
% or $

letter := | A..Z
| a..z

{a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}
or abcdefghijklmnopqrstuvwxyz

digit := | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

{a digit is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9}

underscore := _
{an underscore is _ }

identifier := letter * [letter | digit | underscore] * | % | $ |
------- --------------------------------------

must start a sequence of letters
with a letter digits and underscores

i.e. repeat something
which is optional

03/05 81

turtle
graphics
SBASIC has a set of turtle graphics commands:

Command Function

PENUP stop drawing
PENDOWN start drawing
MOVE move the turtle
TURN turn the turtle
TURNTO turn to a specific heading

The set of commands is the minimum and normally would be used within another procedure to
expand on the commands. For example:

100 DEFine PROCedure forward(distance)
110 MOVE distance
120 END DEFine
130 DEFine PROCedure backwards(distance)
140 MOVE -distance
150 END DEFine
160 DEFine PROCedure left(angle)
170 TURN angle
180 END DEFine
190 DEFine PROCedure right(angle)
200 TURN -angle
210 END DEFine

These will define some of the more famous turtle graphic commands.

Initially the turtle's pen is up and the turtle is pointing at 00, which is to the right hand side of the
window.

The FILL command will also work with figures drawn with turtle graphics. Also ordinary graphics
and turtle graphics can be mixed, although the direction of the turtle is not modified by the
ordinary graphics commands.

win
hard disk
directory device
Hard disk drives on QPC are large files stored on the host PC. The files usually have the suffix
“.WIN” but anything else is fine, too. The name and directory can be configured separately for
up to 8 win devices in the QPC program configurator.

82 03/05

windows
Windows are areas of the screen which behave, in most respects, as though each individual
window was a screen in its own right, i.e. the window will scroll when it has become filled by
text, it can be cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened. The current
window shape can be changed with the WINDOW command and a border added to a window
with the BORDER command. Output can be directed to a window by printing to the relevant
channel. Input can be directed to have come from a particular window by inputting from the
relevant channel If more than one channel is ready for input then input can be switched between
the ready channels by pressing

[CTRL] C

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The non graphic
output is relative to the current cursor position which can be positioned anywhere within the
specified window with the CURSOR command and at any line-column boundary with the AT
command. The graphics output is relative to a graphics cursor which can be positioned and
manipulated with the graphics procedures.

parts
Certain commands (CLS, PAN etc.) will accept an optional parameter to define part of the
current window for their operation. This parameter is as defined below:

part description

0 whole screen
1 above and excluding cursor line
2 bottom of screen excluding cursor line
3 whole of cursor line
4 line right of and including cursor

Command Function

WINDOW re-define a window
BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents
SCROLL scroll a window's contents
AT position the print position
CLS clear a window
CSIZE set character size
FLASH character flash
RECOL recolour a window

03/05 83

A
Arrays.. 3

slicing.. 74
strings.. 80
storage.. 3

B
Background………………………………. 4

colour…………………………………. 4
image…………………………………. 4

BASIC.......................................…......... 5
Baud rates.. 27
BEEP... 76
Binary………………............................. 31
Booting.. 52
Borders……………..……………………. 24
Break.. 5

C
Cartridges

Microdrive....................................... 64
Channels...….... 6
Character set.. 8
Circles... 59
Clock.. 14
Close channels...................................... 6
Coercion... 15
Codes

characters... 8
colour.. 16
palette…………………..………... 17,20
8 colour mode………………………. 16
256 colour mode……………………. 17
16 million colour…………………….. 20

Colour……………………………………. 16
palette…………..……….... 17,20,22,24
8 colour mode………………………. 16
256 colour mode……………………. 17
16 million colour…………………….. 20

Commands
keywords.. 62
direct.. 37
turtle graphics................................. 82
windows.. 83
screen... 73

COM……………………………………… 26
Communications.................................. 26

channels... 6
devices... 30
networking...................................... 42

Comparisons....................................... 81
Console device.................................... 30
Control characters................................. 8
Conversion.. 15
Coordinates

graphics.. 59
pixel.. 67

CTR……………………………………… 26
CTS.. 26
Cursor.. 45
Cursor sprites…………..………………. 28

D
Data

structures... 3
types.. 31

Data storage
Microdrives...................................... 64
arrays ... 3

date.. 14
DCD……………………………………… 26
DCE... 26
DEFine FuNction................................. 58
Defaults
DEFine PROCedure............................ 58
Devices …………………………………. 32

console (con)..........................…..... 33
dev………………………………… 32,35
floppy disk (flp)………………….. 35,57
virtual disk (ram).……………….. 36,69
hard disk (win)…………………… 36,82
dos…………………………………… 39

I/O
nul…..….……….………………… 35,64
pipe………….……………………. 35,66
history………………………...……35,61
parallel (par)..............…...…….... 26,34
serial (srx)...................……….......... 34
serial (stx)............................……..... 34
serial (ser)................................... 26,33
screen (scr)...................................... 33
channels.. 6
file types.. 57

Dimension.. 3
Direct command................................... 37
Directories………………………………. 37
Directory devices……………………….. 38
DOS disks……………………………….. 40
DSR……………………………………… 26
DTR.. 26

E
Elements.. 3
Error handling...................................... 41
Events…………..………………………. 46
EXIT... 72
Expressions... 43
Extended environment………….…….. 44

pointer interface..……….………….. 45
cursor keys………………………….. 45
mouse………………..………….….. 45
locked windows……..….………….. 45
picking…………………..……….….. 45
unlockable windows……………….. 46
primary windows…………..……….. 46
guardian windows…….…...……….. 46
restoring windows…..…..………….. 46
events………..……….….………….. 46
window manager…..……………….. 48
menu items……………..…….…….. 48
single keystrokes………….……….. 48
pan & scroll…….…….…………….. 49
split & join………………….……….. 49
loose items……….……..………….. 49
hotkey2…………………...……..….. 50

84 03/05

F
Files.. 57
Filename.. 33,62
Filling shapes....................................... 60
Floating point.. 31
Floppy disk…..………………………. 35,57
FOR.. 72
Functions.. 58

G
GND……………………..………………. 26
Graphics... 26

turtle.. 82
Guardian window………...…………….. 46

H
Handshaking.. 27
Hexadecimal…………………...……….. 31
Hex codes... 8
High resolution colour.…...................... 20
History device……………………….. 35,61
Hotkey2……………….…………………. 50

I
Identifiers.. 62
Initialisation.. 78
Input

channels... 6
devices... 33
windows... 83

Integers... 31
I/O

devices... 33
Qdos.. 68
windows... 83

J
Join............................….….................. 49

K
Keyboard conventions.......................... 8
Keywords.. 62

L
Lines.................................…................ 59
Line numbering…...........…...... 79

direct commands............….............. 37
Local variables........................….......... 58
Locked window………...……………….. 45
Loops..…...... 72
Loose items………..……………………. 49
LPT……………..…...…………………… 26

M
Maths functions................................... 63
Menu items………….………………….. 48
Microdrives... 64
Modes.. 73
Mouse…………...………………………. 45
Multitasking ... 70

N
Name... 31,62
NEXT.. 72
Nul device………..…..………………. 35,64

O
OPEN..…........ 6
Operators... 65
Operating system................................. 68
Output

channels... 6
Ordering

coercion.. 15
precedence.................................... 65

P
Palettes……………….………. 17,20,22,24
Pan………….….………………………… 49
Parallel…………..….…………………… 26
Parameters... 58
Peripheral expansion............................ 44
Picking…………..…...……….…………. 45
Pictures... 59
Pipe device………...…....……………35,66
Pixel coordinates................................... 67
Pointer interface…..……..……………… 45
Points.. 59
Power up... 75
Precedence.. 65
Primary window……..………………….. 46
Procedure... 58
Programs.. 68

Q
Qdos.. 68
QL…………..……..…………………….. 68

R
Ram disk.................................…...... 36,69
Repetition.....................….................... 72
Restoring windows………….…………. 46
RI…………………..…..………………… 26
RS-232-C......……………..……………. 26
RTS………………………….………….. 26
RXD……..............................…............. 26

S
Scaling.. 59
Screen.. 73

con... 33
scr... 33
windows... 83
colours... 16
modes........….................................. 73

Scroll…………...……..……...………….. 49
Serial communications......................... 26
Signals.. 26
Single keystroke…………...…………… 48
Slicing... 74
SMSQ/E………….……….…………….. 69

03/05 85

Sound... 76
Split………………………………………. 49
Sprites……………………..…………….. 28
Start up... 75
Statements.. 78
Stipples... 16,25
Strings……………………..…..………… 31

variables.. 80
slicing... 74
arrays... 80
comparisons..................................... 80

Switching on.. 75
Syntax definitions.................................. 81

T
Time.. 14
Trig functions.. 63
Turtle graphics...................................... 82
TXD... 26
Type conversion.................................... 15

U
Unlockable windows……..…………….. 46

V
Variables... 31

local.. 58
string.. 31

W
Winchester hard disk…….…………. 36,82
Window manager…………..………….. 48
Window manager colour palettes……. 22

simple colour palette scheme…….. 22
the colour palette scheme……….… 22
the system palette schemes………. 22
gray scale palette scheme………... 24
border colours palette scheme……. 24
palette stipples scheme.……….….. 25
15 bit RGB scheme…………….….. 25

Windows............................…............... 83

86 03/05

